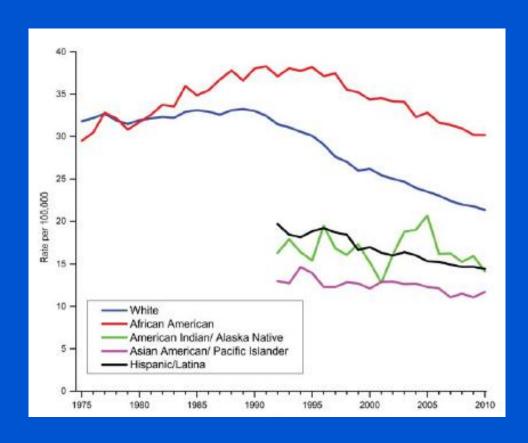
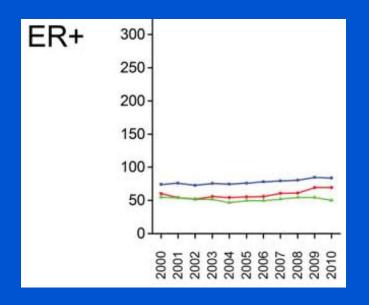
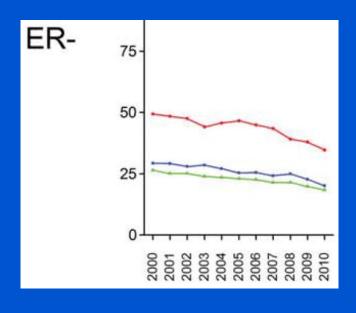

Preserving Fertility and Ovulation Induction in Breast Cancer

Murat Sönmezer
Ankara University School of Medicine


Breast Cancer

- The most common cancer in women (1/3 all cancers)
- A woman has a 12.3%, or a 1-in- 8, lifetime risk of being diagnosed with breast cancer
- Worldwide, around 1.4 million women are diagnosed with breast cancer annually
- In 2011, 13,110 new cases diagnosed in women of «reproductive age» in the US


Breast Cancer Incidence



Breast Cancer Deaths

Breast Cancer ER status

Incidence rates increased for estrogen receptorpositive breast cancers in the youngest white women

DeSantis, CA Cancer J Clin, 2014

Chemotherapy / Gonadal Damage

High risk agents

- Cyclophosphamide
- Cholarambucil
- Melphalan
- Busulfan
- Nitrogen mustard
- Procarbazine

Medium risk agents

- Cisplatinum
- Adriamycin
- Paclitaxel
- Imatinib

Low risk agents

- Methotrexate
- 5-Fluorouracil
- Vincristine
- Actinomycin D
- Bleomycin

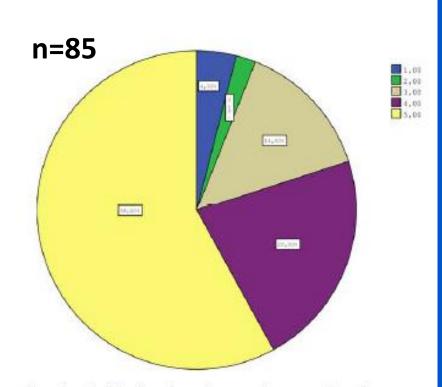
New agents / risk?

- Irinotecan
- Imatinib

Sonmezer&Oktay, Uptodate, 2014

Fertility preservation for breast cancer Critical points

- Fertility/ovarian function is preserved
- Positive impact on QoL and on coping with the disease
- Safety of COH in ER dependent tumors
- Time constraints


Options for Fertility Preservation

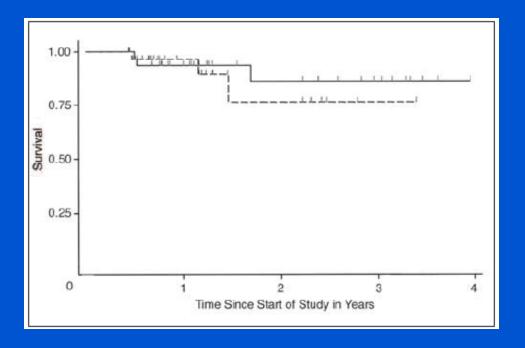
- Embryo cryopreservation
- Mature/immature oocyte cryopreservation
- In vitro maturation
- Ovarian transposition
- Donor oocyte
- Ovarian tissue cryopreservation
- Xenografting
- GnRHa pretreatment
- Antiapoptotic treatments ⇒SP1P

Ovarian cryo. vs. oocyte/embryo cryo.

	Ovarian cryo.	Oocyte /embryo cryo.
Advantages	 Chemo. not delayed Only option for prepubertal girls Resumption of endocrine functions 	Technique standardHigh success ratesWidespread use
Disadvanta ges	 L/S upfront Limited number of pregnancies Cancer reseeding? 	 2-3 W required Limited number of oocyte/embryo Not easily applicable in children

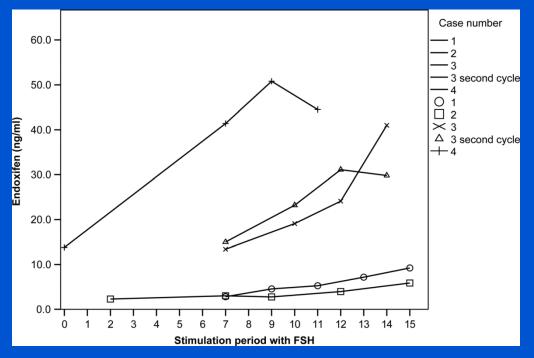
Positive impact on QoL and on coping with the disease

Graph 4: Motivational morale contribution of ovarian cryopreservation to patients' struggle with a malignancy. (1-5, 1; no effect, 5; maximum boosting morale)


Letrozole / TMX Stimulation - IVF

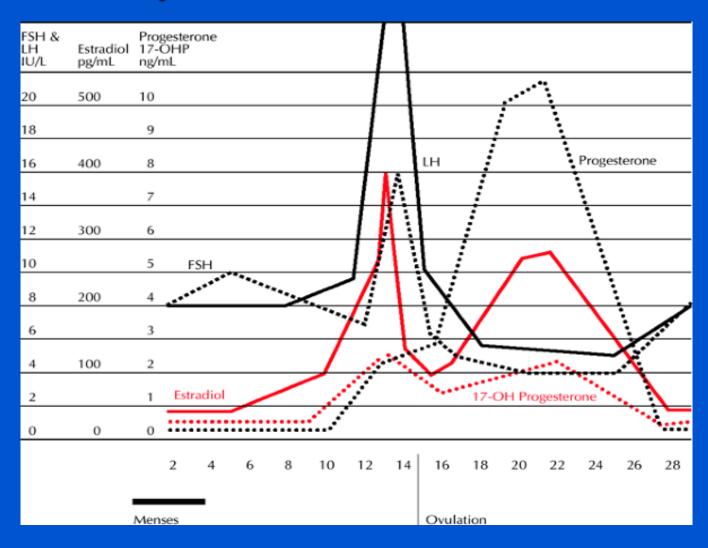
Fertility Preservation in Breast Cancer Patients: A Prospective Controlled Comparison of Ovarian Stimulation With Tamoxifen and Letrozole for Embryo Cryopreservation

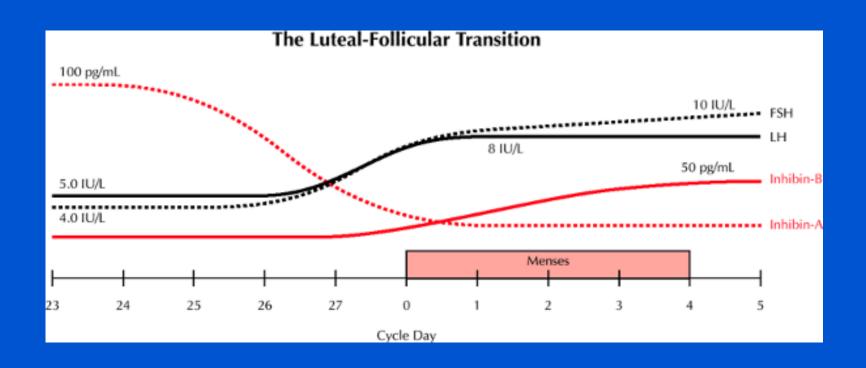
Kutluk Oktay, Erkan Buyuk, Natalie Libertella, Munire Akar, and Zev Rosenwaks


- 29 women aged 24-43 years, 33 COH cycles
 - TMX 60mg/d alone
 → 12 patients, 13 cycles
 - TMX-FSH → 7 patients 9 cycles
 - Letrozole (5mg/d)-FSH \rightarrow 11 patients 11 cycles

		Mean ± Standard Deviat	ion		Р	
Variable	Tam-IVF (a)	TamFSH-IVF (b)	Letrozole-IVF (c)	a <i>v</i> b	a v c	b v c
Age, years	36.6 ± 1.6	38.3 ± 1.9	38.5 ± 1	NS	NS	NS
Baseline FSH, mU/mL	9.4 ± 1.5	9.4 ± 1.5	6.2 ± 1.1	NS	NS	NS
PeakE ₂ , pg/mL†	419 ± 39	1,182 ± 271	380 ± 57	< .05	> .05	< .05
Total follicles, No.	2 ± 0.3	6 ± 1	7.8 ± 0.9	< .01	< .001	> .05
Follicle > 17 mm, No.	1.2 ± 0.1	2.6 ± 0.4	3.2 ± 0.4	< .05	< .001	> .05
Total oocytes, No.	1.7 ± 0.3	6.9 ± 1.1	12.3 ± 2.5	< .05	< .001	> .05
Mature oocytes, No.	1.5 ± 0.3	5.1 ± 1.1	8.5 ± 1.6	< .05	< .001	> .05
Total embryos, No.	1.3 ± 0.2	3.8 ± 0.8	5.3 ± 0.8	< .05	< .001	> .05

A prospective case series of women with estrogen receptor-positive breast cancer: levels of tamoxifen metabolites in controlled ovarian stimulation with high-dose tamoxifen

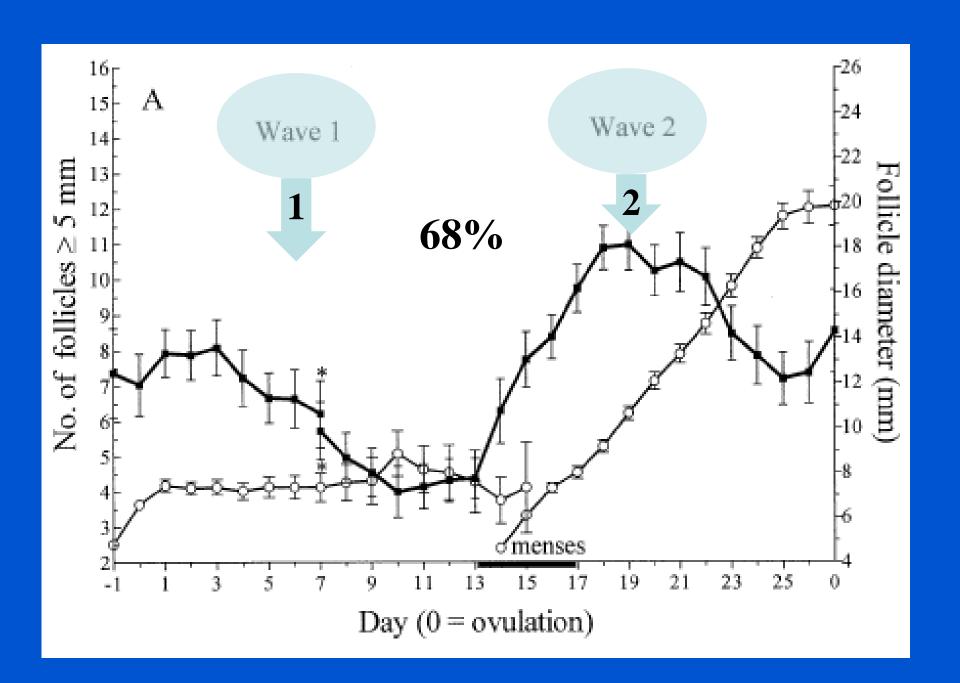

E.M.E. Balkenende¹, T. Dahhan^{1,*}, S.C. Linn², N.G.L. Jager³, J.H. Beijnen³, and M. Goddijn¹

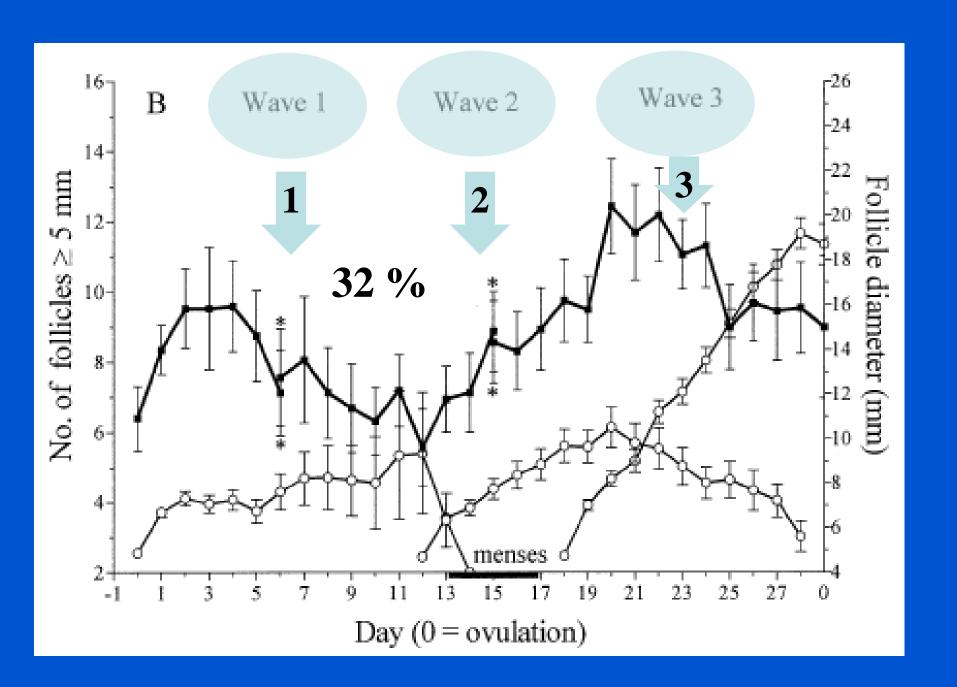

- TMX 60mg/day+FSH
- 4 patients
- 5-11 oocytes vitrified
- Endoxifen >7ng/ml (ER inhibition)

Balkenende, Hum Reprod, 2012

Physiology of Ovarian Follicular Development

Physiology of Ovarian Follicular Development




A new model for ovarian follicular development during the human menstrual cycle

Angela R. Baerwald, B.Sc. Hon., a Gregg P. Adams, D.V.M., M.S., Ph.D., and Roger A. Pierson, M.S., Ph.D.

University of Saskatchewan, Saskatoon, Saskatchewan, Canada

- Is there only one major follicular wave in a single menstrual cycle?
- n=50 healthy ovulating women

Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles

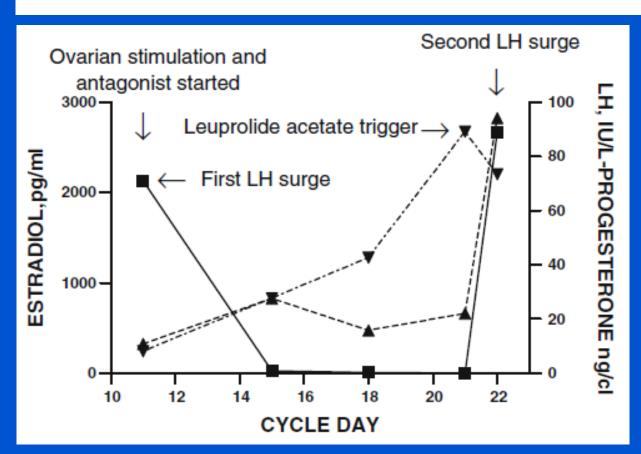
Murat Sönmezer, M.D., a,b Ilgın Türkçüoğlu, M.D., Uğur Coşkun, M.D., and Kutluk Oktay, M.D.

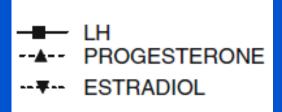
TABLE 1

Baseline characteristics and COH outcome of the patients with breast cancer undergoing emergency fertility preservation.

Characteristic	Case 1	Case 2	Case 3
Age (y)	29	26	26
Stage	1	II .	II .
Histology	Invasive ductal	Mixed invasive ductal +	Invasive ductal
		lobular	
COH start day	14	11	17
FSH (mIU/mL)	6.2	2.8	4.6
LH (mIU/mL)	5.8	2.8	1.2
E ₂ (ng/mL)	62	269	50
P (pg/mL)	1.2	0.4	2.5
Endometrial thickness (mm)	7	6.5	9
Antral follicle count (n)	11	20 ^a	20 ^b
GnRH antagonist start day	5	1	5
Peak E ₂ (pg/mL)	499	988	478
Duration of COH (d)	9	12	9
Oocytes retrieved (n)	9	17	16
Metaphase II, no. (%)	7 (77.7)	10 (58.8)	11 (68.75)
Metaphase I + germinal	2 (22.3)	7 (41.2)	5 (31.25)
vesicle, no. (%)			
Fertilization rate, no. (%)	7/8 (87.5)	10/12 (83.3)	9/13 (69.2)
Cleavage rate (%)	7/7 (100)	NA	NA
Embryos frozen (n)	7	10	9

Random Start COH


• Random start n=35


Conventional start n= 93

Comparison of outcomes of conventional-and random-start controlled ovarian stimulation cycles.						
	Conventional start (n = 88; 103 cycles)	Random start (n = 35; 35 cycles)	P value	Late follicular phase start (n = 13; 13 cycles)	Luteal phase start (n = 22; 22 cycles)	<i>P</i> value ^a
Antral follicle count (AFC)	13.0 (11.7–14.5)	11.5 (9.6–13.8)	NS	10.5 (7.8–14.2)	12.1 (9.6–15.2)	NS
Days of ovarian stimulation	9.3 (9.0–9.5)	10.9 (10.4–11.5)	< .001	10.5 (9.6–11.4) ^b	11.2 (10.5–12.0) ^c	<.001
Total dose of gonadotropins (IU) ^d	3,404 (3,180–3,628)	4,158 (3,774–4,542)	.001	3,842 (3,213–4,472)	4,344 (3,860–4,827) ^e	.005
Gonadotropin daily dose (IU/d) ^d	361 (345–378)	372 (343–400)	NS	371 (324–418)	373 (337–409)	NS
Follicles ≥ 13 mm	10.5 (9.3-11.9)	11.8 (9.6-14.5)	NS	10.9 (7.8-15.4)	12.3 (9.5-16.0)	NS
Oocytes retrieved	14.4 (12.8-16.2)	14.5 (11.8-17.8)	NS	13.0 (9.3-18.2)	15.5 (11.9-20.1)	NS
Mature oocytes (MII) retrieved	9.7 (8.4-11.2)	9.9 (7.7-12.7)	NS	9.1 (6.0-13.7)	10.3 (7.5-14.2)	NS
MII oocytes/total oocytes ratio	0.66 (0.62-0.71)	0.67 (0.59-0.76)	NS	0.68 (0.56-0.82)	0.67 (0.58-0.78)	NS
Oocytes/AFC ratio	1.09 (0.99-1.19)	1.26 (1.07-1.49)	NS	1.24 (0.95-1.62)	1.28 (1.04-1.57)	NS
Mature oocytes/AFC	0.73 (0.65-0.82)	0.85 (0.70-1.04)	NS	0.84 (0.61-1.17)	0.86 (0.67-1.10)	NS
Fertilization rate after ICSI (2PWMII)	0.72 (0.65–0.80)	0.87 (0.72–1.00)	NS	0.85 (0.67–1.00)	0.88 (0.70–1.00)	NS

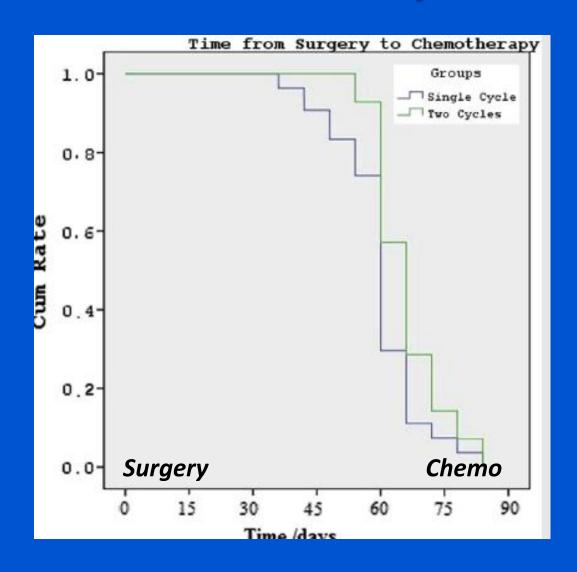
Luteal phase GnRHa trigger in random start fertility preservation cycles

Enis Ozkaya · Gabriel San Roman · Kutluk Oktay

hCG vs GnRHa for ovulation trigger Letrozole + FSH

Characteristic	hCG (n = 47)	GnRHa (n = 27)
Age (years)	35.0 ± 4.3	33.6 ± 4.4
Body mass index (kg/m ²)	23.3 ± 4.2 ^a	21.5 ± 2.5 ^a
Baseline FSH (mIU/ml)	6.8 ± 2.7	8.2 ± 2.9
FSH stimulation duration (day)	9.6 ± 1.6	9.9 ± 1.6
Total gonadotrophin dose (IU)	2012.8 ± 603.5	1994.4 ± 549.1

Parameter	hCG trigger (n =47)	GnRHa trigger (n= 27)	P-value
Peak estradiol (pg/ml)	472.6 ± 345.5	695.5 ± 539.0	0.044
Endometrial thickness (mm)	8.8 ± 1.8	8.4 ± 2.3	NS
Total oocytes	12.8 ± 7.7	16.4 ± 10.3	NS
Mature oocytes	7.4 ± 4.9	11.9 ± 6.6	<0.001
Oocyte maturation rate (%)	68.5 ± 23.3	77.3 ± 21.1	0.049
Two-pronuclei embryo ^a	6.3 ± 4.6	9.3 ± 5.7	0.008
Fertilization rate (%)	74.0 ± 24.9	84.1 ± 11.1	0.027
Drop in E2 from day 0 to 4 (%)	79.0 ± 13.4	89.5 ± 6.3	0.013
Mild or moderate OHSS (%)	10 (21.3)	1 (3.7)	0.047


Consecutive COH Cycles with Letrozole

- Single cycle stimulation n=61
- Two cycle stimulation n=17

Comparison of fertility preservation cycle outcomes of patients with breast cancer after performing two cycles.

Outcome	Single cycle $(n = 61)$	Two cycles (n = 17)	P value
Oocytes (n) Mature oocytes (n) Inseminated oocytes (n) Fertilized oocytes (n) Embryos (n)	9.1 ± 5.2 6.2 ± 3.0 6.0 ± 3.9 5.4 ± 2.3 3.7 ± 3.1	16.1 ± 13.2 10.3 ± 7.7 9.8 ± 5.5 7.4 ± 3.9 6.4 ± 2.9	.008 .004 .002 .040 .019

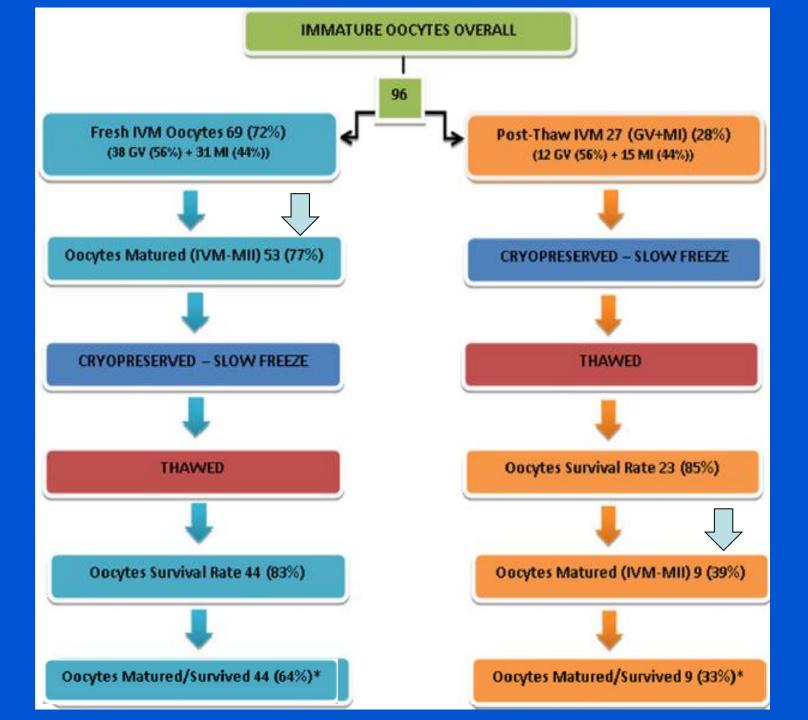
Consecutive COH Cycles with Letrozole

Luteal phase immature oocyte retrieval and IVM

- Single patients aged 21,30, and 40 years seeking fertility preservation before chemo
- 7,5, and 7 immature oocytes retrieved
- Following IVM 5,3, and 5 MII oocytes vitrified

Immature Oocyte Cryopreservation Which comes first? IVM vs. Cryopreservation

- Donated oocytes following standard GnRH-ant protocol
 - n=71 patients, 96 oocytes

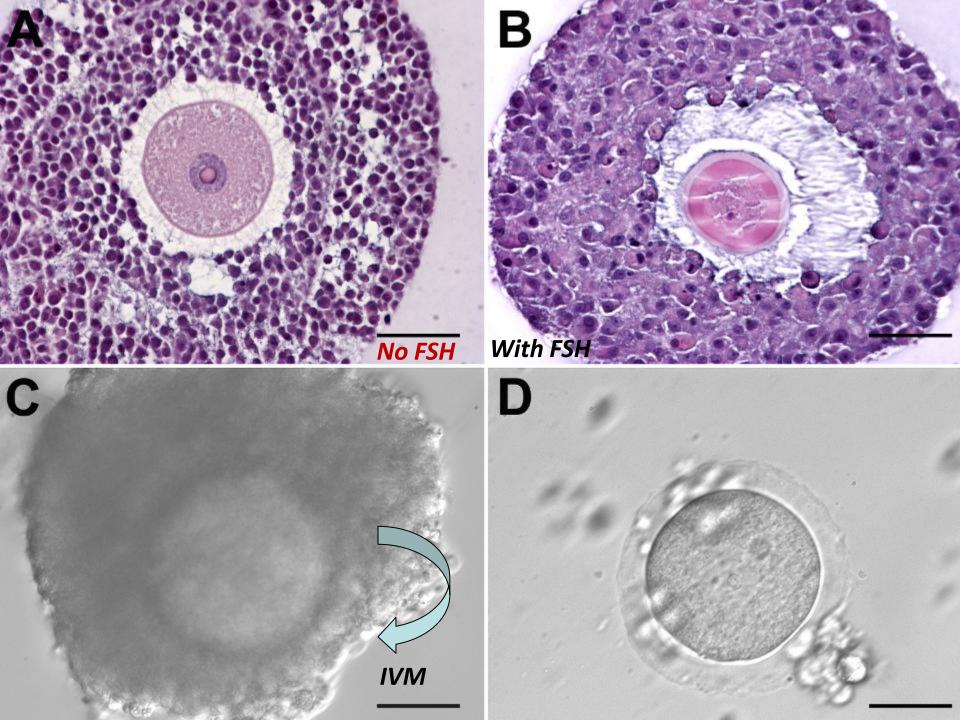

Fresh IVM oocytes n=69

GV: 38 M1: 31

Post thaw IVM oocytes

N=27

GV: 12 M1: 15

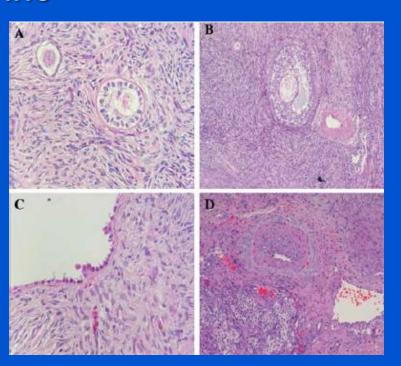


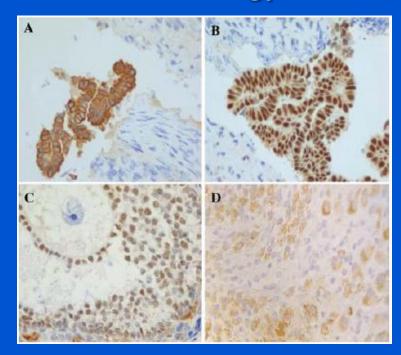
BIOLOGY OF REPRODUCTION 84, 689–697 (2011) Published online before print 1 December 2010. DOI 10.1095/biolreprod.110.088674

In Vitro Oocyte Maturation and Preantral Follicle Culture from the Luteal-Phase Baboon Ovary Produce Mature Oocytes¹

Min Xu,^{3,4} Asgerally T. Fazleabas,⁵ Ariella Shikanov,^{4,6,7} Erin Jackson,^{3,4} Susan L. Barrett,^{3,4} Jenny Hirshfeld-Cytron,^{3,4} Sarah E. Kiesewetter,^{3,4} Lonnie D. Shea,^{4,6,7} and Teresa K. Woodruff^{2,3,4}

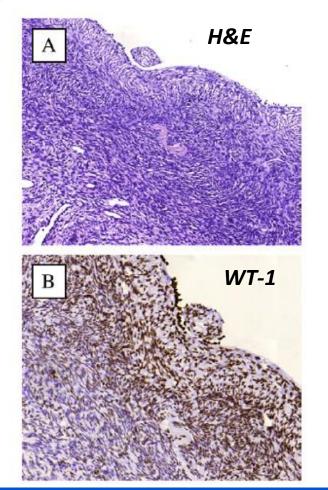
- Oocytes from small antral follicle COC with <u>«multiple cumulus layers»</u> (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a <u>«single layer of cumulus cells»</u> or less (23% vs. 3%, respectively).
- MII oocytes- ICSI → Morula (25%)

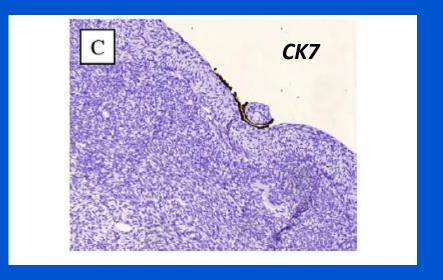

Ovarian Tissue Cryopreservation in Breast Cancer



Early stage breast cancer Ovarian metastasis (histology and IHC)

IHC


Standard histology



Ovarian involvement: 0/63 patients (100 cortical pieces) undergoing ovarian cryopreservation

Early stage breast cancer Ovarian metastasis (histology and IHC)

Ovarian cortex from one of the 51 women with breast cancer. Histologic and immunohistochemical analysis shows no signs of metastatic infiltration. (A) H&E. (B) WT-1. (C) CK-7. Magnification, \times 10.

Ovarian involvement: 0/51

Rosendahl, Fertil Steril, 2011

Non gynecoogic ovarian metastasis Analysis of 150 cases

•	Colon	30%

Stomach 16%

Appendix 13%

• Breast 13%

Pancreas 12%

• Biliary tract 15%

• Liver 4%

Ovarian Tissue Cryopreservation + IVM

Ovarian tissue cryopreservation and IVM

- 57 patients undergoing ovarian tissue cryo., aged 8-35 years
- Antral fluid was collected from removed ovary
- 266 oocyted retrieved

_	Degenerated	28
	D Ch Ch Ch Ch Ch	

- GV 200

– MI 35

- MII 3

24-28h IVM before cryopreservation (maturation rate 31%)

Fasano, Reprod Biol Endocrinol. 2011

Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation

Jack Y. J. Huang, M.D., Togas Tulandi, M.D., M.H.C.M., Hananel Holzer, M.D., Seang Lin Tan, M.D., M.B.A., and Ri-Cheng Chian, Ph.D.

Department of Obstetrics and Gynecology, McGill University Health Center, McGill University, Montreal, Quebec, Canada

Patient no.	Age	Cancer type	Day of menstrual cycle	Surgical procedure	No. of GV oocytes retrieved from ovarian tissue	No. of MII oocytes following IVM	Maturation rate (%)	No. of MII oocytes vitrified
1	21	Hodgkin lymphoma	2	Ovarian wedge resection	3	3	100	3
2	35	Breast	19	Oophorectomy	1	1	100	1
3	18	Hodgkin lymphoma	5	Ovarian wedge resection	4	2	50	2
4	38	Rectal cancer	14	Ovarian wedge resection and oophoropexy	3	2	67	2

Improving fertility preservation in cancer: ovarian tissue cryobanking followed by ovarian stimulation can be efficiently combined

- Study group : n=12 patients
- Control group : n=28 patients
- In the study group, half ovarian tissue was removed

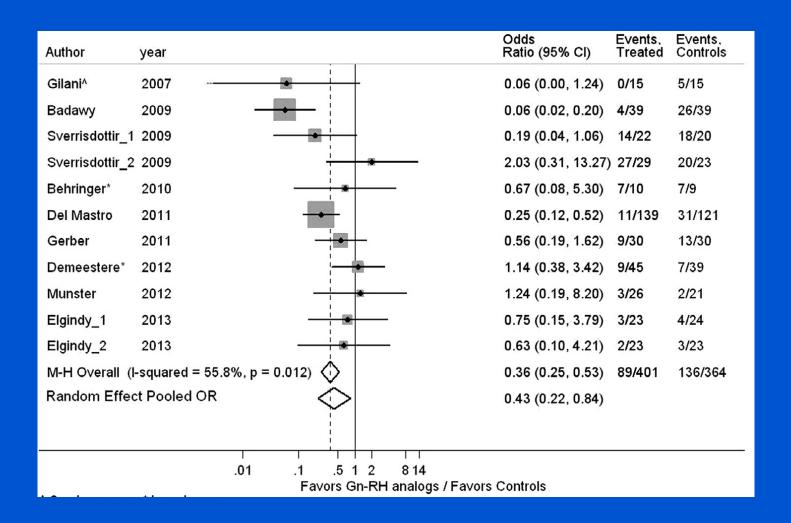
Main characteristics and stimulation outcome of	patients with (study group)	p) and without (control group) ovarian biops	sv.
	berraite tritti (etaal) gioale	p, and man (control group) cranan brops	-,-

Parameter	Study group (n = 12) ^a	Control group (n = 28)
Age of patients (y), mean \pm SD	31.1 ± 6.2	27.6 ± 5.0
Days of stimulation, mean \pm SD	10.2 ± 2.6	10.6 ± 2.5
Dosage of stimulation (IU), mean \pm SD	2527 ± 942	2255 ± 945
Total no. of aspirated oocytes	145	367
Aspirated oocytes per patient, n	12.1	13.1
MII-oocytes/aspirated oocytes, % ^b	65.5	83.8
No. of MII oocytes (processed for ICSI) ^c	44	66
Fertilization rate/MII oocytes, %	75.0	60.6

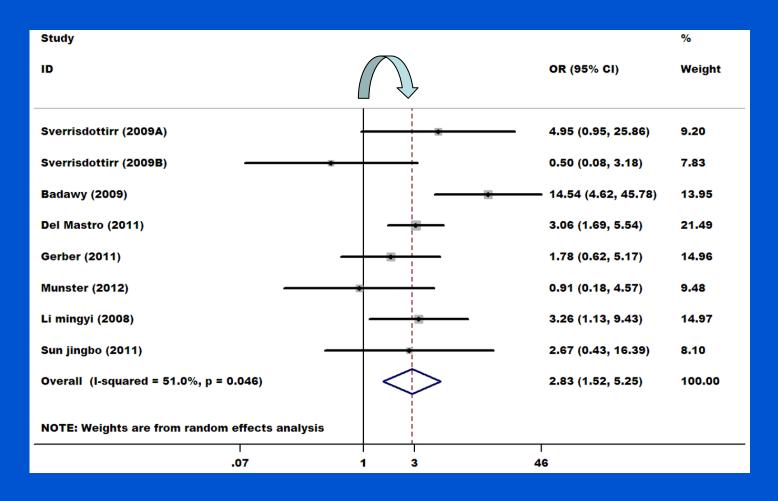
Subgroup analysis of biopsied and nonbiopsied ovaries in the study group.

	Oo cyte source					
Parameter	Biopsied ovaries	Nonbiopsied ovaries				
Total no. of aspirated oocytes	70	75				
Aspirated oocytes per patient, na	5.8	7.5				
MII oocytes/aspirated oocytes, %	70.0	61.3				
No. of MII oocytes (processed for ICSI) ^b	25	19				
Fertilization rate/MII oocytes, %	80.0	68.4				

Oocyte retrieval from removed ovary


Characteristic of the patient's menstrual cycle		Patients n	Mean age ± SEM	Mean fragments of ovarian tissue (range)	Oocytes retrieved n (range)	Mean oo cytes retrieved /fragment	Mean oocytes retrieved /patients		tage at		IVM rate
								GV	MI	MII	
OC		11	23.1 ± 1.3	20.1 (10-29)	38 (0-9)	0.17 ± 0.07^{a}	3.4 ± 1.06^{a}	71%	29%	0%	42.1%
Natural cycle FF		19	26.3 ± 1.5	21.6 (7-32)	69 (0-15)	0.17 ± 0.06^{a}	3.6 ± 1.09^a	80%	19%	1%	27.9%
Natural cycle LF		16	27.9 ± 1.1	18.1 (12-26)	44 (0-13)	0.15 ± 0.05^{a}	2.8 ± 0.83^{a}	84%	14%	2%	39.5%
Post-partum		5	31 ± 2.2	26.3 (16-36)	33 (1-12)	0.23 ± 0.12^{a}	6.6 ± 1.86	91%	6%	3%	28.1%
Unknown		2	29.5 ± 0.5	20-32	8 (0-8)	0.15 ± 0.26	4 ± 4	100%	0%	0%	12.5%
Prepubertal		4	9.2 ± 1.4	31.7 (17-40)	46 (2-22)	0.36 ± 0.28^{b}	11.5 ± 4.27 ^b	93%	7%	0%	23.9%
Total	<u> </u>	57	26 ± 0.9	21.8 (7-40)	238 (0-22)	0.19	4	84%	14.7%	1.3%	31%

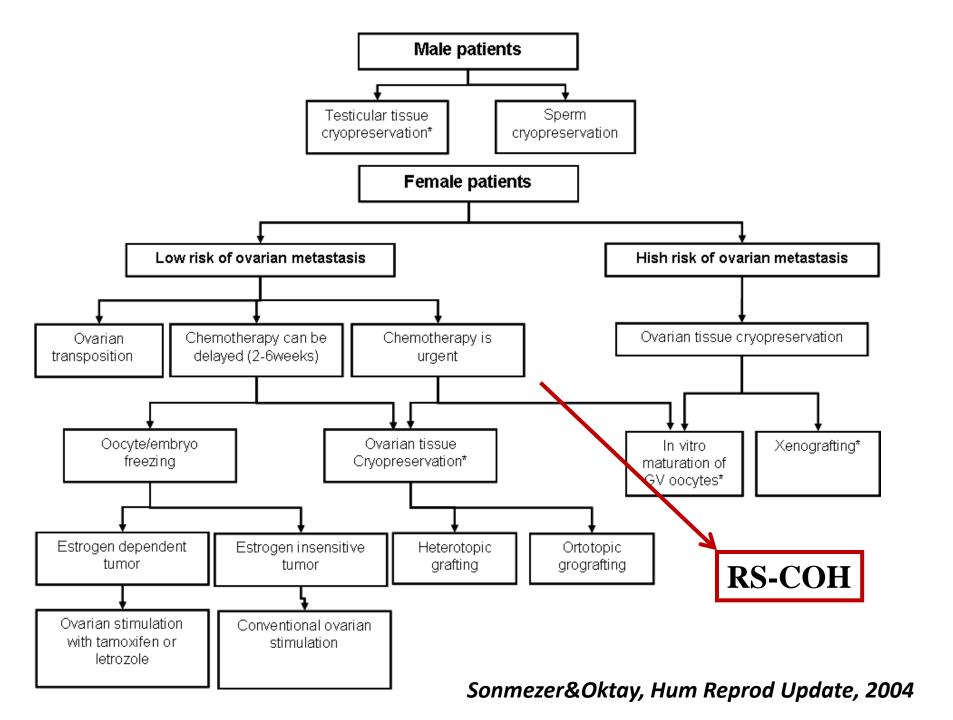
 Oocytes were retrieved regardless of menstrual cycle period or contraception


Fertility preservation in BRCA1 positive breast cancer patients

- A possible negative impact of subsequent conception on breast cancer survivors – «not demonstrated»
- Coexistence of an ovarian cancer
- PGD to avoid transmitting BRCA mutations
- Decreased ovarian reserve!! Deficient DNA repair make oocytes more vulnerable

GnRHa Cotreatment during Chemo

GnRHa Cotreatment during Chemo Spontaneous menstruation



GnRHa Cotreatment during ChemoOvarian reserve

- One trial showed higher anti-Müllerian hormone levels (improved ovarian reserve) after use of a GnRH agonist (1.4 ± 0.35 versus 0.5 ± 0.15 ng/mL in untreated controls)
- After 1 year follow up 20% of patients in each group developed POF, «showing no evidence of ovarian protection»

GnRHa Cotreatment during Chemo Concerns

- Normality of offspring DNA breaks during chemo (Down Syndrome)
- Increased gonadodoxicity by decreasing the effect of detoxifiying enzymes – GST
- Extrapituitary GnRH receptors
 - Antigonadotropic, antiproliferative, antiapoptotic effects
 - Possible reduction of chemo effect on breast cancer
- Definition of ovarian failure is heterogeneous
- No study showed increased fertility

Conclusions - I

- Patients should be referred as early as possible to increase the success rate of FP
- In an emergent setting, random start COH can be safely and effectively performed
- Breast cancer recurrence risk seems not increased following Letrozole-IVF

Conclusions - II

- Ovarian tissue cryopreservation appears safe in early stage breast cancer
- Ovarian tissue cryopreservation can be performed along with COH-embryo/oocyte cryopreservation
- The possibility of dormant tumor cell growth should be considered in ER dependent breast cancer following ovarian transplantation
- More data establishing the safety of ovarian suppression in cancer patients and its long-term efficacy in preserving fertility (not just resumption of menses) are needed.