Immunohistochemical And Ultrastructural Analysis Of The Effect Of Omega-3 On Embryonic Implantation In An Experimental Mouse Model

Kemal Sarsmaz*, <u>Aslı Göker*</u>, Serap Cilaker Mıcılı** Bekir Uğur Ergür**, Naci Kemal Kuşçu*

*Obstetrics and Gynecology Celal Bayar University Manisa, **Histology and Embryology Dokuz Eylül University Izmir

Implantation

- Steroid hormones, cytokines, integrins, growth factors, adhesion molecules, pinopodes
- The implantation window: the blastocyst interacts with the endometrial epithelium and is in the receptive stage

Implantation

- During implantation the interaction between trophoectoderm and luminal epithelium triggers a remodelling in epithelial cell organisation.
- Cells flatten and loose their microvilli and the polarity between apical-basal luminal epithelium decreases
- The success of implantation depends on correct timing of the blastocyst-endometrium encounter.

Essential Fatty Acids

- Are used in the synthesis of prostaglandins, thromboxanes and leucotriens
- Are structural components of cell membranes and are needed for cell functioning

Omega-3

 Insufficient Omega-3 fatty acid may lead to increase in triglycerid and cholesterole, growth retardation, hypertension, impairment in wound healing, hair loss, depression of the immune system and postpartum depression

• Omega-3 integrates into the phospholipids of the cell membrane and is important for mitochondri specific functions

LIF

• Endometrium of mice at implantation contain LIF

- Human endometrium contains LIF during blastocyst implantation
- LIF also contributes to trophoblast adhesion and differentiation
- Women with high LIF immunoreactivity during the implantation period are shown to have high pregnancy rates
- Infertile women with endometriosis do not express LIF in their endometrium

Laminin

- Laminin is an extracellular matrix protein that increases in basal membrane after implantation
- Contributes to embryogenesis, cell migration, differentiation and cell growth
- Laminin favors trophoblastic invasion into the extracellular matrix

Morphology during Implantation

• Decrease in microvilli in apical membranes of secretory cells and the formation of pinopodes

Immunohistochemical And Ultrastructural Analysis Of The Effect Of Omega-3 On Embryonic Implantation In An Experimental Mouse Model

Aim of the study

To investigate the effect of Omega-3 fatty acid supplementation on implantation

Materials and methods

•21 albino mice (mus musculus (C/C)) weighing 18-22 g

• Regular menstrual periods of the mice were determined by vaginal smears

Group I :standard animal food pellets
Group II + low dose Omega-3
(400 mg/kg Omega -3)
Group III + high dose Omega-3
(1000 mg/kg Omega-3)

* inner cells of the morula form the inner cell mass; *outer cells of the morula form the trophectoderm

Images are courtesy of Dr. B. Behr and the Stanford University TVF clinic.

• the mice were left for mating.

- Vaginal plaque was checked for pregnancy the following day and time at 12.00 was considered as embryonic day E:0.5.
- The mice were sacrificed on expected day of implantation, namely day 3.5.
- Chicago Blue was applied intravenously, after ten minutes laparatomy was performed and foci on uterine horns which were blue in color were determined as implantation regions.

Results

• LIF Immunohistochemical scoring

	Lumen Epithelium	Gland Epithelium	Stroma	
Control	1,00±0,57	0,57±0,53	1,14±0,37	
Low dose	1,14±0,37*	0,71±0,48*	1,14±0,37*	
High dose	2,28±0,48*	1,71±0,48*	2,00±0,57*	

Results

• Laminin Immunohistochemical scoring

	Lumen Epithelium	Gland epithelium	Stroma
Control	1,71±0,48	1,57±0,53	1,57±0,53
Low dose	1,57±0,53	1,42±0,53	1,85±0,37
High dose	2,42±0,53*	2,42±0,53*	2,42±0,53*

LIF

• Number of microvilli per unit area and Lumen epithelium height (ultrastructural)

Groups	Microvillus number/1000n m	Mann Whitney U Test (p value)	Epithelium average height (nm) ± Standard deviation	p value
Control	3,80	0,599	$18175,94 \pm 2979,3$	0,008
Low dose	2.67	0,000*	17844,71±719,9*	0,004
Omega-3	2,07			
High dose	216	0,000*	7051,08± 682,3*	0,004
Omega-3	2,10			

Conclusion

Mice that received Omega-3 supplementation
Had an increased secretion of LIF during the implantation window
Had an increase in Laminin immunoreactivity
Had a decrease in microvillus number
Had a decrease in uterus surface epithelial height

Omega-3 supplementation seems to have good effects on implantation and reproduction