

Hastaya Göre KOH Protokolleri Individualized COH (iCOH)

Gürkan Bozdağ

Department of OBGYN School of Medicine, Hacettepe University Ankara-TÜRKİYE

One size fits all !

- Appropriate for everyone!
 - Single type COH
 - Single type gonadotropin
 - Single dose of gonadotropin

– Individualized COH (iCOH)

What should be the measure of success in an IVF cycle?

Individualized COH (iCOH)

- 1. Maximum live birth rate
- 2. "Enough" ovarian response !
- **3. Minimum side effects and complications** (OHSS, multiple pregnancy)
- 4. Patient friendly strategies (least injection and infrequent monitorization)

"Enough" ovarian response ! Sunkara SK et al, HR, 2011 (n= 400 135 cycles)

 Nonlinear relation between no. of oocyte and LBR !

Figure 5 Nomogram to calculate predicted live birth probability given egg number and age.

Ovarian response Prediction !

- Ovarian reserve
 - Female age
 - AFC
 - -AMH
 - FSH

Ovarian reserve tests<u>Poor</u> ovarian response (FSH, AFC, AMH)

	Three-test study group				Total study group			
	AUC	95% CI	P-value	n	AUC	95% CI	P-value	n
Poor response prediction								
Univariable models								
Age	0.61	0.54-0.68	NA	617	0.60	0.57-0.64	NA	4034
FSH	0.68	0.61-0.74	0.051	617	0.66	0.62-0.69	0.004	3652
AFC	0.76	0.70-0.82	<0.001	617	0.73	0.69-0.77	< 0.001	2118
AMH	0.78	0.72-0.84	<0.001	617	0.81	0.77-0.84	< 0.001	1274
Multivariable models	\smile							
Age and FSH	0.71	0.65-0.78	<0.001	617	0.69	0.66-0.72	< 0.001	3652
Age and AFC	0.79	0.73-0.85	<0.001	617	0.76	0.72-0.80	< 0.00 I	2118
Age and AMH	0.77	0.70-0.83	<0.001	617	0.80	0.76-0.84	< 0.00 I	1274
Age and AMH and AFC	0.80	0.74-0.86	<0.001	617	0.80	0.74-0.86	< 0.00 I	618
Age and AMH and AFC and FSH	0.81	0.75-0.86	<0.001	617	0.81	0.75-0.86	< 0.00 I	617

Ovarian reserve tests Multivariate models

- Verhagen ve ark, HRU, 2008
 - 11 trials
 - Models in the of prediction of POR

Author	Prediction variables	Poor response (n)	Normal response (n)	Total (%)	Sensitivity (%)	Specificit
Balasch et al. (1996)	Age+FSH	40	80	120	53	81
	Age+inhibin B	40	80	120	59	67
	Inhibin B+FSH	40	80	120	57	69
	Age+FSH+inhibin B	40	80	120	39	89
Ranieri et al. (1998)	FSH+GAST	48	129	177	97	55
Creus et al. (2000)	Age+FSH	40	80	120	83	77
	Age+inhibin B	40	80	120	74	50
	FSH+inhibin B	40	80	120	77	73
	Age+FSH+inhibin B	40	80	120	83	77
Fábregues et al. (2000)	FSH+inhibin B	28	52	80	42	86
Bancsi et al. (2002)	AFC+inhibin B+FSH	36	84	120	75	95
	AFC+FSH	36	84	120	72	93
	AFC+inhibin B	36	84	120	69	88
	FSH+inhibin B	36	84	120	58	94
Van Rooij et al. (2002)	AMH+inhibin B+FSH	35	84	119	68.6	90.5
Durmusoglu et al. (2004)	Age+AFC	24	67	91	52	88
Erdem et al. (2004)	Abnormal CCCT+age	16	16	32	81	69
	Abnormal CCCT+age+OV+AFC	16	16	32	81	75
Muttukrishna et al. (2004)	FSH+inhibin B+AMH [§]	17	52	69	62.5	83.3
Hendriks et al. (2005a)	FSH+AFC	17	46	63	65	96
Penarrubia et al. (2005)	Age+FSH	129	129	258	63.1	68.8

CCCT, clomiphene citrate challenge test; OV, ovarian volume; AFC, antral follicle count; FSH, follicle stimulating hormone; GAST, gonadotrophin agonist stimulation test; AMH, anti-Mullerian hormone.

Multivariate models and AFC have similar performance.

Ovarian reserve tests <u>Excessive</u> ovarian response (AFC, AMH)

- Broer SL et al, HRU, 2011.
 - AMH (n=9) and AFC (n=5)

AMH: sensitivity %82, specificty %76 AFC : sensitivity %82, specificity %80

Ovarian reserve tests Ongoing pregnancy (FSH, AFC, AMH)

	Three-test study group			Total study group				
	AUC	95% CI	P-value	n	AUC	95% CI	P-value	n
Ongoing pregnancy prediction								
Univariable models	\frown							
Age	0.57	0.47-0.66	NA	420	0.56	0.54-0.59	NA	5207
FSH	0.53	0.43-0.62	0.348	420	0.54	0.51-0.58	0.084	3521
AFC	0.50	0.40-0.59	0.100	420	0.52	0.48-0.57	0.612	1977
AMH	0.55	0.45-0.64	0.630	420	0.58	0.51-0.64	0.495	1008
Multivariable models								
Age and FSH	0.58	0.48-0.67	0.195	420	0.60	0.57-0.64	0.116	3521
Age and AFC	0.58	0.48-0.67	0.247	420	0.57	0.52-0.61	0.709	1977
Age and AMH	0.57	0.48-0.67	0.753	420	0.59	0.53-0.65	0.415	1008
Age and AMH and AFC	0.59	0.49-0.68	0.371	420	0.59	0.49-0.68	0.341	421
Age and AMH and AFC and FSH	0.58	0.49-0.68	0.414	420	0.58	0.49-0.68	0.414	420
Age and Arth and Art and FSH	0.50	0.47-0.00	0.414	420	0.56	0.47-0.00	0.414	720

Ovarian reserve tests Live birth rate (AMH)

- La Marca et al, RBM Online, 2011
 - 2005-2008, IVF database(n=381)
 - Logistic regression (for LBR)
 - Only female age and AMH level

able 5	Probability	(95% CI)	of live	birth after	IVF	according	to age	and AMI	١.
--------	-------------	----------	---------	-------------	-----	-----------	--------	---------	----

Age (vears)	AMH (ng/ml)						
	<0.4	0.4–<2.8	≥2.8				
<31 31-37 >37	0.13 (0.04–0.36) 0.09 (0.02–0.24) 0.05 (0.01–0.16)	0.38 (0.26–0.51) 0.27 (0.21–0.35) 0.18 (0.12–0.26)	0.52 (0.38–0.67) 0.40 (0.28–0.54) 0.29 (0.17–0.44)				

Probability of live birth was obtained by using the parameters estimated from the logistic model:

 $P(\text{live birth}) = \frac{\exp(-2.88 + 1.38 * \ln AMH_{1-2} + 1.96 * \ln AMH_3 + 1.01 * age_{<31} + 0.52 * age_{31-36})}{1 + \exp(-2.88 + 1.38 * \ln AMH_{1-2} + 1.96 * \ln AMH_3 + 1.01 * age_{<31} + 0.52 * age_{31-36})}$

For LBR, sensitivity % 79.2 and Spesificity 44.2%

Ovarian reserve tests Clinical use (AFC, AMH)

Marker	Poor response	Excessive response
AMH (ng / ml)	0.7 – 1.3 (IBC and DSL)	3.5 – 3.9 (Gen II)
AFC (2 – 10 mm)	5 – 7	16

CHANGES OF AFC IN YEARS

Figure 2 Changes in reported values for the mean or the median (depending on available data) of follide number per ovary (FNPO) in healthy women

AMH INSTABILITY

Figure 2 Stability of AMH in serum at RT. Results at each time interval are expressed as a percentage of the patient's AMH concentration at Day 0. Means \pm SEM are indicated.

Sample no.	AMH (pm	ol/l)	
	Fresh	-20°C, PS	-80°C, PP
1	12.41	15.51	13.12
2	42.17	75.42	45.08
3	11.93	17.12	12.39
4	10.42	12.82	12.28
5	9.56	9.05	8.79
6	19.02	26.01	18.84
7	24.02	20.16	23.62
8	1.45	1.37	1.32

PS, polystyrene LP4 tube; PP, polypropylene 2 ml tube.

Interval result

- Broer SL et al, HRU, 2013.
 - Since ovarian reserve tests predict cycle cancellation but do not predict no-pregnancy, women should not be refrained from an IVF cycle based on abnormal reserve tests.
 - Unfortunately, OR tests are the most frequently used tools to tailor COH, among the available variables.

Based on ovarian reserve

- Expected poor ovarian responders
- Expected hyper ovarian responders
- Expected normal ovarian responders

Expected normal ovarian responders

- Best protocol?
- Optimal type of gonadotropin ?
- Optimal dose of gonadotropin ?

Best protocol ! GnRH agonist vs antagonist

- Al-Inany, Cochrane, 2011 (45 RCTs)
 - vs long agonist protocol
 - LBR: -0.86; (95%CI: 0.76 to 1.04), 9 RCTs
 - Similar for fixed and flexible protocols in subgroup analysis
 - OHSS, 21 RCTs, regular population

1.5.2 Regular population							
Albano 2000	2	198	5	95	6.0%	-0.04 [-0.09, 0.00]	
Badrawy 2005	Z	50	2	50	2.3%	0.00 [-0.08, 0.08]	
Barmat 2005	0	40	0	40	1.9%	0.00 [-0.05, 0.05]	-
Euro Midd East 2001	4	236	1	119	7.3%	0.01 [-0.01, 0.03]	+
Euro Orgalutran 2000	11	486	14	244	15.1%	-0.03 [-0.07, -0.00]	
Firouzabadi 2010	3	118	12	117	5.4%	-0.08 [-0.14, -0.02]	
Fluker 2001	12	205	2	108	6.6%	0.04 [-0.00, 0.08]	-
Heijnen 2007	6	205	12	199	9.4%	-0.03 [-0.07, 0.01]	
Hohmann 2003	1	97	0	45	2.9%	0.01 [-0.03, 0.05]	+
Hsieh 2008	3	86	2	58	3.2%	0.00 [-0.06, 0.06]	
Hurine 2006	Z	91	3	91	4.2%	-0.01 [-0.06, 0.04]	
Karimzadeh 2010	0	121	6	122	5.6%	-0.05 [-0.09, -0.01]	
Kyono 2005	2	126	6	66	4.0%	-0.08 [-0.15, -0.00]	
Lee 2005	3	40	2	20	1.2%	-0.03 [-0.18, 0.13]	
Lin 2006	1	60	3	60	2.8%	-0.03 [-0.10, 0.03]	
Moraloglu 2008	2	45	4	48	2.2%	-0.04 [-0.14, 0.06]	
Olivennes 2000	4	126	4	43	3.0%	-0.06 [-0.15, 0.03]	
Rombauts 2006	5	234	6	117	7.2%	-0.03 [-0.07, 0.01]	
Serafini 2003	1	49	1	28	1.7%	-0.02 [-0.09, 0.06]	
Xavier 2005	4	66	1	65	3.0%	0.05 [-0.02, 0.11]	+
Ye 2009	3	109	2	111	5.1%	0.01 [-0.03, 0.05]	+
Subtotal (95% CI)		2788		1846	100.0%	-0.02 [-0.03, -0.01]	•
Total events	71		88				<u>्</u>
Heterogeneity: Chi ² = 35.9	97, df = 20	(P = 0.02)	(); $ ^2 = 4$	14%			I
Test for overall effect: Z =	3.75 (P =	0.0002)	45-515-526				

Expected normal ovarian responders GnRH antagonist (Devroey P, 2009)

Figure I Suggested GnRH antagonist treatment protocol for normal responders. US, ultrasound.

Expected normal ovarian responders Mild stimulation (ISMAAR)

- 2-7 oocyte, low dose FSH/hMG, GnRH antagonist cycle (± anti-estrogen)
- Verberg, HRU, 2009 (3 RCTs)
 - vs long agonist protokol
 - Median oocyte is 6 vs 9 (p< 0.001)

		Started treatment cycles (all first cycles)	Retrieval procedures	Embryo transfers	Ongoing pregnancy rate*	Live birth rate
Hohmann et al. (2003)	Mild	49	32	28	16%	n.a.
	Conventional	45	38	26	18%	n.a.
Heijnen et al. (2007)	Mild	201	147	124	13%	13%
	Conventional	193	176	160	33%	31%
Baart et al. (2007)	Mild	63	56	41	21%	n.a.
	Conventional	41	40	33	18%	n.a.
Total	Mild	313	235	193	15%	n.a.
	Conventional	279	254	219	29%	n.a.

Types of Gonadotropins

	FSH content	LH activity content	Brand name
HUMAN DERIVED			
HP hFSH	75 IU	< 0.1 IU	Fostimon, Bravelle
hMG	75 IU	75 IU	Pergonal, Humegon, Menogon
HP hMG	75 IU	75 IU	Merional, Menopur
hCG	absent	250-5,000 IU	Gonasi, Choriomon, Pregnyl
RECOMBINANT			
rFSHα	75-1,050 IU	absent	Gonal F
rFSHβ	50-900 IU	absent	Puregon, Follistim
rLH	absent	75 IU	Luveris
rCG	absent	250 μg	Ovidrel
$rFSH\alpha + rLH$	150 IU	75 IU	Pergoveris

Expected normal ovarian responders Optimal type of gonadotropin !

- Van Wely, HRU, 2012
- **Rec FSH vs urinary** (HMG, highly purified HMG, purified urinary FSH and highly purified urinary FSH)
 - 28 RCTs, 7339 patients
 - Similar LBR (OR 0.97, 95% CI 0.87-1.08)
- Rec FSH vs hMG
 - 11 RCTs, 3197 patients
 - Higher LBR in favor of hMG (OR 0.84, 95% CI 0.72–0.99)

Expected normal ovarian responders Long acting gonadotropin

- Pouwer AW, Cochrane, 2012
 - 4 RCTs (23.335 women)
 - Daily vs long acting FSH
 - Similar LBR and OHSS
 - Low dose long acting (60 120 mcg) vs daily
 FSH
 - Lower LBR (OR: 0.60; 95% CI 0.40 to 0.91)

Expected normal ovarian responders Optimal dose !

 The prediction of "optimum" starting gonadotropin dosing is a challenge and is currently based on physician preference rather than evidence based.

To avoid hypo- and hyper-ovarian response.

Expected normal ovarian responders Optimal dose – no. of oocytes

- Sterrenburg et al, HRU, 2011 (10 RCTs)
 - Incremental dose is related with higher no. of oocytes.

Expected normal ovarian responders Optimal dose – CPR

Expected normal ovarian responders Optimal dose – unexpected POR

Expected normal ovarian responders Optimal dose – excessive response

Expected normal ovarian responders Optimal dose – CPR

• Sterrenburg et al, HRU, 2011 (10 RCTs)

: Düzenli

- Expected normal responders
 - **Female age** : 18 39
 - Menstrual pattern
 - **BMI** : < 30
 - GnRH agonist or antagonist
- Ideal dose is around 150 / day.
- Similar for agonist and antagonist

Interval result

Expected normal responders

- Best protocol
 - Agonist = antagonist (secondary adv.)
- Best dose of Gn
 - Around 150 IU/day
- Best type of Gn
 - Conflict of interest in the available literature.
 - Final decision is not given, and probably will not...

• Tailoring the COH (Protocol ± Gn ± Dose)

- Predictive models for the whole population !
 - Univariate
 - Multivariate

iCOH-univariate models (AMH) Optimal protocol and dose of gonatropin

 Table I Deployment of GnRH analogues and doses of follicle stimulating hormone in the groups categorized by anti-Müllerian hormone in the two centres

AMH group (pmol/l)	Centre I		Centre 2	Centre 2		
	FSH daily dose	GnRH analogue	FSH daily dose	GnRH analogue		
<1.0	375	Antagonist	(Modified natural cycle)	(Antagonist)		
1.0 to <5	375	Agonist	300	Antagonist		
5.0 to <15	225	Agonist	225	Agonist		
≥15.0	150	Agonist	150	Antagonist		
	6 H 1					

AMH, anti-Müllerian hormone; FSH, follicle stimulating hormone.

Nelson, HR, 2009 (n=538)

 \geq 15 pmol/l

: Risk of hospitalisation due to OHSS= 0% vs 14%.

[:] Higher CPR with GnRH antagonist = OR 4.40 (95%CI 1.95 –9.93)

iCOH-univariate models (AMH) Optimal protocol and dose of gonatropin

Human Reproduction Vol.18, No.4 pp. 781-787, 2003

DOI: 10.1093/humrep/deg181

A prospective study of predictive factors of ovarian response in 'standard' IVF/ICSI patients treated with recombinant FSH. A suggestion for a recombinant FSH dosage normogram

B.Popovic-Todorovic $^{1,3}\!,$ A.Loft $^1\!,$ A.Lindhard $^1\!,$ S.Bangsbøll $^1\!,$ A.M.Andersson 2 and A.Nyboe Andersen 1

Table VII. rFSH dosage normogram

Total number of antral follicles <10 mm day 2-5	FSH score IU/day	rFSH starting dose
<15	90	
15-25	60	
>25	50	
Total ovarian volume day 2-5		Score
<9 ml	90	
9-13 ml	60	
>13 ml	50	
Total Doppler score day 2-5		Score
2-3	30	
4	20	
5	10	
6	0	
Age (years)		Score
>35	20	
>30 - ≤ 35	10	
≤ 30	0	
Smoking habits cigarettes/day		Score
>10	20	
≤10	10	
Non smoker	0	
Total FSH score (sum of scores) same		
as dose IU/day		

131 women are randomized

- 1. arm iCOH
- 2. arm 150 IU, fixed
- Definition of optimal response: 5-14 oocytes,
 - Optimal response 77.1% vs 65.6%; p<0.05)
 - OPR 36.6% vs 24.4% (p<0.01).
- Clinical use !

Individualizing FSH dose for assisted reproduction using a novel algorithm: the CONSORT study

Francois Olivennes attended medical school in Paris and then studied for his PhD in Biology of Reproduction at the University Pierre et Marie Curie in Paris. Following a fellowship under Pr Zev Rosenwaks in Cornell Medical College in New York, he returned to work in France. He was successively medical director of the french ART units in A. Beclere Hospital in Clamart with Rene Frydman and in Cochin Hospital in Paris. He is now coordinator of the private IVF centre of Eylau La Muette in Paris. He was a member of the ESHRE executive comittee from 2003 to 2007. His research interests include obstetric and peadiatric outcome of IVF, development of ovarian stimulation protocols and prevention of IVF complications.

Dr François Olivennes

Y (oocytes retrieved) = $\alpha + \beta_1 AGE + \beta_2 AGE^2 + \beta_3 BMI + \beta_4 FSH + \beta_5 FOLL_LT11 + \beta_5 DOSE$

Therefore

```
DOSE = (Y - (\alpha + \beta_1 AGE + \beta_2 AGE^2 + \beta_3 BMI + \beta_4 FSH + \beta_5 FOLL\_LT11)) / \beta_6
```

- A prospective, <u>uncontrolled (18-centre)</u>
- Basal FSH, BMI, age and AFC (LLL) based doses
 - Howles CM, Current Medical Research and Opinion, 2006
- Normo-ovulatory women aged 18–34 years
- Overall, a median of 9.0 oocytes were retrieved.

Individualizing FSH dose for assisted reproduction using a novel algorithm: the CONSORT study

Francois Olivennes attended medical school in Paris and then studied for his PhD in Biology of Reproduction at the University Pierre et Marie Curie in Paris. Following a fellowship under Pr Zev Rosenwaks in Cornell Medical College in New York, he returned to work in France. He was successively medical director of the french ART units in A. Beclere Hospital in Clamart with Rene Frydman and in Cochin Hospital in Paris. He is now coordinator of the private IVF centre of Eylau La Muette in Paris. He was a member of the ESHRE executive comittee from 2003 to 2007. His research interests include obstetric and peadiatric outcome of IVF, development of ovarian stimulation protocols and prevention of IVF complications.

Dr François Olivennes

La Marca, BJOG 2012 - La Marca, J Ovarian Res 2013

Variable	Univariate			Multivariate		
	Regresssion coefficient	Standard Error	р	Regresssion coefficient	Standard Error	р
Age	-0,28116	0,05076	< 0.0001	-0,08732	0,05046	0.02
FSH	-0,32630	0,06085	< 0.0001	-0,22924	0,05726	0.0001
AFC	0,41664	0,03041	< 0.0001	0,35517	0,03538	<0.0001
BMI	-0,002	0,00005	0.01	-0,001	0,00005	TIS .
Height	-0,01227	0,00358	ns	-0,01	0,003	ns
Weight	0,04202	0,02488	0.09	0,03	0,02	ns
Basal estradiol	-0,00664	0,00503	ns	-0,004	0,005	ns
Smoking status	-0.00051	0.00008	0.01	-0.0005	0.00003	ns

Table 2 Predictors of number of retrieved oocytes in univariate and multivariate backward regression analysis

iCOH (current status) La Marca and Sunkara, HRU, 2013

iCOH (future)

- iCOH is feasible
 - But questionable with the available tools
- Multivariate > univariate models
- Proper tools ?
 - Genetic biomarkers (Gonadotropin response assay)

