Reproductive & Reconstructive Gynecological Surgery

Assoc Prof Batuhan Özmen Ankara University Article Talk

3.00
ι Ω W
* # 7
WIKIPEDIA

The Free Encyclopedia

Main page

Contents

Featured content Current events

Random article

 Interaction Help About Wikipedia Community portal Recent changes Contact page

Tools
Print/export

Languages
Português

ø

Donate to Wikipedia Wikimedia Shop

~
Gynecological surgery
<u>Oyneeological surgery</u>

From Wikipedia, the free encyclopedia

This article does not cite any references or sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (December 2009)

Gynecological surgery refers to surgery on the female reproductive system. Gynecological surgery is usually performed by gynecologists. It includes procedures for benign conditions, cancer, infertility, and incontinence. Gynecological surgery may occasionally be performed for elective or cosmetic purposes.

Search

Read Edit View history

VITIE Female genital surgical and other procedures (gynecological surgery) (ICD-9-CM V3 65-71, ICD-10-PCS 0U) [hide]						
Adnexa	Ovary	Oophorectomy • Sa	lpingoophorectomy			
AULICAD	Fallopian tubes	Falloposcopy• Salp	pingectomy • Tubal ligation • Essure • Tubal reversal			
	general:	Hysterectomy · Hyste	rotomy · Pelvic exenteration · Uterine artery embolization			
	uterine cavity:	Hysteroscopy • Vacu	um aspiration			
Uterus	endometrium:	n: Endometrial biopsy-Endometrial ablation				
	myometrium:	Uterine myomectom	у			
	cervix:	Colposcopy · Cervica	al conization (LEEP) • Cervical cerclage • Cervical screening (P	'ap test) • Cervicectomy		
Vagina	Vaginectomy · Cu	idoscopy · Cuidocente	sis • Hymenotomy • Colpocleisis • Hymenorrhaphy • Vaginal w	ret mount		
Vulva	Vulvea Vulvectomy - Female genital mutilation - Labiaplasty - Clitoral hood reduction					
Medical imaging Gynecologic ultrasonography - Hysterosalpingography						
M: ♀ FRS			anat/phys/devp	noco/cong/npls, sysi/epon	proc/asst, drug (G1/G2B/G3CD)	

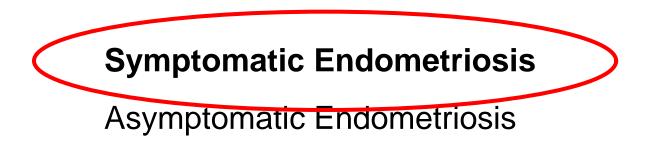
M This surgery article is a stub. You can help Wikipedia by expanding it.

Categories: Gynecological surgery | Surgical specialties | Surgery stubs

Q

Create account & Log in

I. Reproductive Ovarian Surgery


- 1. Cysts, Lessions and Masses
 - Endometriomas
 - Non-Endometriomas
- 2. Surgeries for Ovulation Induction
 - Ovarian Drilling
- 3. Surgeries for Gamete Preservation
 - Transposition
 - Ovarian cortex cryopresevation

I.A Endometriosis & Endometriomas

- 1. Diagnostic Surgery
- 2. Conservative Surgery
- 3. Definitive Surgery

Diagnostic Surgery: Endometriosis

"Still the gold standard for making the diagnosis remains the laparoscopic visualization of lesions preferably with histologic confirmation"

Consensus on current management of endometriosis 2013 The World Endometriosis Society Montpellier Consortium

Diagnostic Laparoscopy

- 1. Reduction of FPR by histology (Stage I-II)
- 2. Enables staging and scoring (Objective Defining)
- Uncorrelation of the stage/extent of disease and symptoms experienced, reproductive outcome or recurrence risk
- Poor accuracy of diagnostic predictors (RANTES, MIF, MCP1, Cytokeratin 19, urinary peptide, endometrial nerve fibre density).

"The benefit of L/S Stage I and II endometriosis is insufficient to recommend laparoscopy solely to increase the likelihood of pregnancy."

Early Stage: I/II

- 1. If ablation/resection of visible endometriosis is performed vs no treatment. (NNT 12)
- 2. 30% of asymptomatic patients with otherwise unexplained infertility will be diagnosed with endometriosis (NNT 40)

Late Stage, Stage III/IV endometriosis

- L/S cystectomy > 4 cm endometriomas improved fertility compared to cyst drainage and coagulation.
- 2. No other identifiable infertility factors, L/S and L/T may increase fertility.
- 3. A possible adverse consequence is reduced ovarian reserve.
- 4. After the first infertility operation, additional surgery has only rarely increased fecundability, and these patients may be better serve

"To date, evidence suggests that surgery does not benefit asymptomatic women with an endometrioma prior to scheduled IVF/ICSI"

However, larger >4 cm, surgery

- 1. to confirm the diagnosis histologically,
- 2. to improve access to follicles during oocyte retrieval,
- **3**. to improve ovarian response.

S NCBI <u>Resources</u> ⊠	How To			
Publed.gov US National Library of Medicine National Institutes of Health	PubMed •	Advanced	Search	
Display Settings: 🖂 Abstra	act		<u>Send to:</u> ⊘	ହ

Arch Gynecol Obstet. 2013 Jun;287(6):1251-7. doi: 10.1007/s00404-012-2704-9. Epub 2013 Jan 6.

Can ovarian damage be reduced using hemostatic matrix during laparoscopic endometrioma surgery? A prospective, randomized study.

Sönmezer M¹, Taşkın S, Gemici A, Kahraman K, Özmen B, Berker B, Atabekoğlu C.

Author information

¹Department of Obstetrics and Gynecology, Ankara University School of Medicine, Cebeci, Ankara 06100, Turkey.

Abstract

PURPOSE: To compare the effect of hemostatic matrix (HM) and electrosurgical bipolar coagulation (EBC) on ovarian reserve in patients undergoing endometrioma surgery.

METHODS: Thirty patients with single ovarian endometrioma ≥4 cm were randomized to two groups. Ovarian reserve after laparoscopic excision of endometrioma was assessed by serum anti-Müllerian hormone (AMH); preoperatively and in postoperative months 1 and 3.

RESULTS: The preoperative AMH levels were similar between the groups. Intra-group comparisons: the AMH levels were significantly lower in the first and third postoperative months as compared to basal levels in both groups. In each group, AMH levels were significantly higher in the third postoperative month as compared to first postoperative month. Inter-group comparisons: AMH levels were significantly lower in the EBC as compared to the HM at 1st postoperative month (1.64 ± 0.93 vs. 2.72 ± 1.49 ng/mL). However, the AMH levels were increased and became similar at 3rd postoperative month.

CONCLUSIONS: Although acute ovarian damage was more in EBC group, ovarian reserve was compensated at 3rd month. Further studies with long-term follow-up will clarify the importance of these findings.

PMID: 23291972 [PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances

Publication Types Comparative Study Randomized Controlled Trial

Stage III/IV + previously 1 surgery

- IVF-ET is often a better therapeutic option than another surgical intervention, (No answers in RCT)
- 2. Medical adjunct therapy in conjunction with laparoscopic surgery has not been shown to have fertility benefit.

LOD: How many punctures and Energy

1. Personalization

- 2. Minimum energy and puncture.
 - 4 puncture, 5 sec 30 W optimal Amer SA, Hum Reprod 2003;
- **3.** Higher punctre and energy let
 - Decrease in ovarian reserve (4-6 Punctures)
 - Periovarian adhesions!!! (Right < Left)</p>
- **4.** Unilateral = Bilateral LOD
- 5. Mini-L/S, Vaginal Hydro L/S

Dabirashrafi H. Fertil Steril 1989 Zacherad M Fertil Steril 2011 *Cochrane Library* 2012, Issue 6 Mercorio Fertil Steril 2007 Kandil M, BJOG 2005 Salah IM Arc Obstet Gynecol 2013

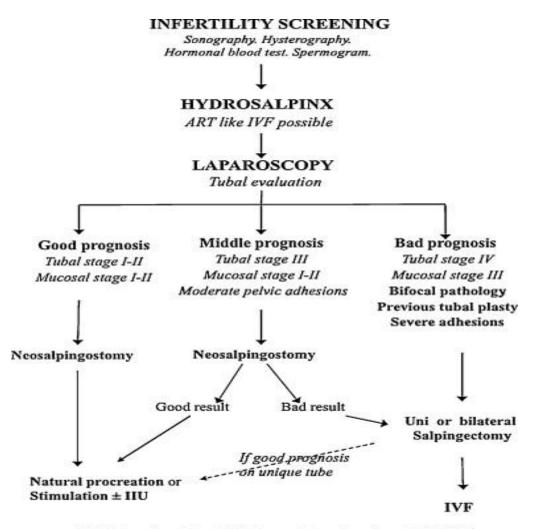
LOD: Resistance

%20-30 Anovulation

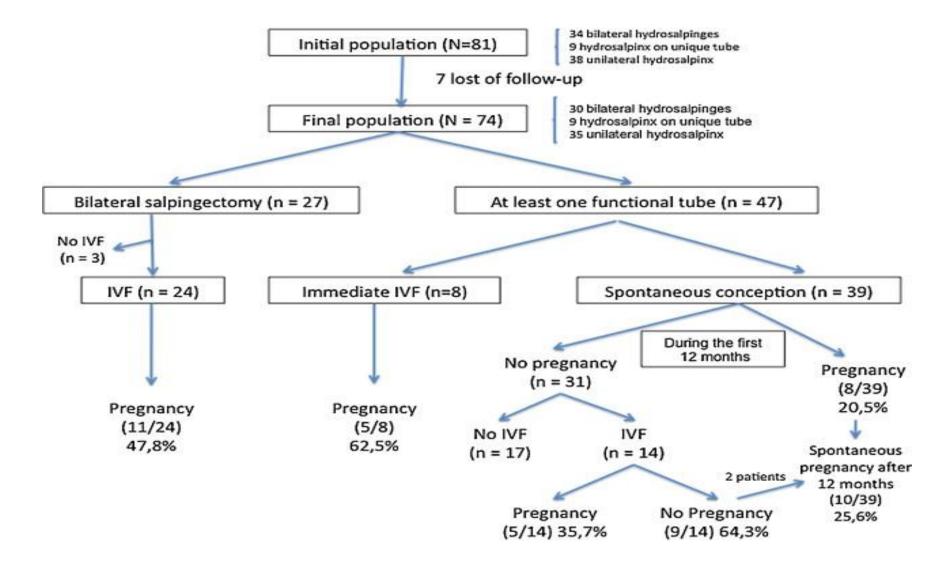
- 1. Obesity (BMI) >34 kg/m2
- 2. Significant hyperadronegism
 - FAI ≥15
 - Testosteron >4.5 nmol/l.
- 3. İnfertility >3 years

Fallopian Tubes

- 1. Surgeries for Hydrosalpinx
- 2. Surgeries for Tubal Obstructions
- 3. Tubal Reversal


Surgeries for Hydrosalpinx

- 1. Salpingectomy
- 2. Salpingostomy
- 3. Tubal Ligation & Clips
- 4. Essure protocol
- 5. Adriana protocol
- 6. Ethanol Inj. (Sclerotherapy)


TV/USG

Conservative Surgery vs Slpx

Tubal stage from Mage [11], Mucosal stage from Boer-Meisel [10]

Conservative Surgery vs Slpx

Essure – IVF Results

	IVF-related outcomes						
Study ID	IVF	PRs/ET	MRs	LBRs/ET	Preterm birth	Ongoing PRs	
Nichols and West	10	5/10	2/5	3/10	3/10	3/10	
Galen et al.	21	13/21	1/13	12/21	3/21	12/21	
Mijatovic et al.	45	18/45	6/18	12/45	1/45	12/45	
Thébault et al.	34	7/34	4/7	3/34	0/34	3/34	
Matorras et al.	21	5/211	1/5	4/21	3/21	4/21	
Total	140	54/140 (38.6%)	14/54 (25.9%)	39/140 (27.9%)	7/140 (5%)	40/140 (28.6%)	

Ethanol Injection vs Salpigectomy

Variable	Group 1 (sclerotherapy)	Group 2 (salpingectomy)	<i>p</i> -value
Patients	56	41	NS
Age	32.9 ± 4.1	32.4 ± 4.5	NS
Duration of infertility (yr)	2.9 ± 1.8	3.8 ± 3.4	NS
Body mass index (kg/m ²)	21.5 ± 2.2	22.2 ± 5.0	NS
Day 3 FSH	10.9 ± 17.1	8.2 ± 4.6	NS
IVF cycle	60	46	NS
Oocytes retrieved	12.1 ± 11	6.2 ± 1.0	NS
Clinical pregnancy rate	23/60 (38%)	17/43 (40%)	NS
Ectopic pregnancy rate	2/56 (3.6%)	0/41 (0%)	NS
Previous surgical history	29/56 (52%)	12/41 (29%)	0.027

The results showed that ultrasound-guided HSF aspiration and sclerotherapy have IVF outcomes comparable to L/S salpingectomy.

%98 Ethanol Injection

Parameters	No reccurence	Reccurent	Hydrosplx	Control	<i>P</i> value
No of patients	123	34	47	135	
No of IVF cycles	130	39	50	145	
Age of women, y	30.0 ± 3.6	30.4 ± 3.6	30.1 ± 3.7	30.3 ± 3.6	NS
Body mass index, kg/m ²	21.6 ± 1.6	21.3 ± 1.4	21.8 ± 1.9	21.4 ± 1.7	NS
No of transferred embyros	2.3 ± 0.5	2.4 ± 0.5	2.3 ± 0.4	2.3 ± 0.5	NS
Implantation rate, n (%)b	26.4 (79/299)	24.5 (23/94)	8.8 (10/113)d	30 (100/333)	P < .01
PRs, n (%, per ET)b	43.1 (56/130)	38.5 (15/39)	16.0 (8/50)d	50.3 (73/145)	<i>P</i> < .01
Abortion rate, n (%) and	14.3 (8/56)	20.0 (3/15)	25.0 (2/8)	16.4 (12/73)	NS
Ectopic pregnancy rate, n (%) ^{and}	7.1 (4/56)	6.7 (1/15)	12.5 (1/8)	5.5 (4/73)	NS
Live birth rate, n (%, per ET)b	33.8 (44/130)	28.2 (11/39)	10.0 (5/50)d	39.3 (57/145)	P < .01

Debates: Fibrosis, Reduced Ovarian Reserve ???

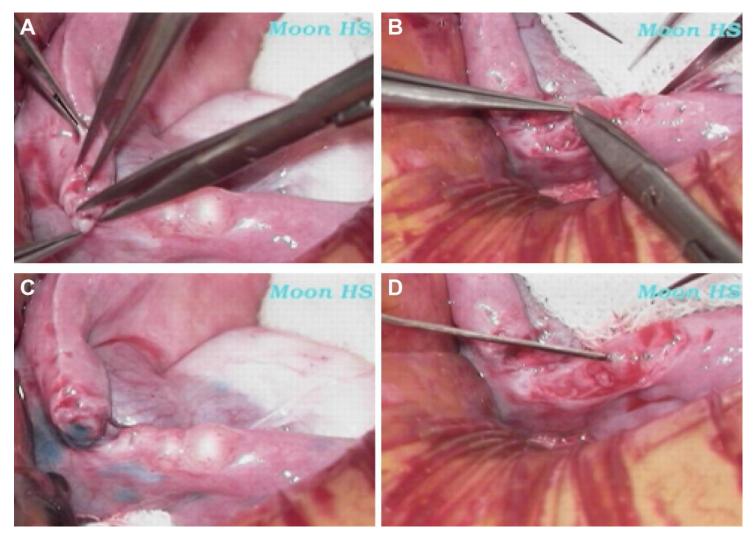
Tubal Obs & Reversal Predictors

- 1. Age of the patient
- 2. Length of Remained Tube
- **3**. Type of surgery
 - Type A—the more favorable prognosis group (ie, clip or ring tubal ligation)
 - Type B—the less favorable prognosis group encompassing all other types of tubal ligation (ie, postpartum tubal ligation, electrocautery, Parkland, or unknown type)

Tubal Reversal: Outcomes

Overall pregnancy	754/886 (85.1%)
Intrauterine pregnancy	732/886 (82.6%)
Spontaneous abortion	76/732 (10.4%)
Known deliveries	680/732 (92.3%)
Ectopic pregnancy	22/886 (2.5%)
Time length from anastomosis to pregnancy (mts)	6.2 ± 6.7 (1–55)

There is no difference between L/S vs L/T regarding overall PRs, Intrauterine & ectopic PRs.


> Moon et al Hum Reprod 2013 Grange et al Gyncoö Obstet Invest 2012

Clinical situation	Age range	Base case (range)
Successful tubal reanastomosis with A	NA	75% (56.6–100%)
Successful tubal reanastomosis with B	NA	67.5% (40–74.3%)
Live birth rate (singleton) after tubal reanastomosis	≤35	79.89% (50–100%)
Live birth rate (twins) after tubal reanastomosis	≤35	1.09% (0-2%)
Live birth rate (triples or more) after tubal reanastomosis	≤35	0.014% (0-0.3%)
IVF live birth rate singleton	≤35	27.3% (13-40%)
IVF live birth rate twins	≤35	12.9% (6–24%)
IVF live birth rate triplets or more	≤35	1.3% (0–3%)
Live birth rate (singleton) after tubal reanastomosis	35–40	66.08% (50–100%)
Live birth rate (twins) after tubal reanastomosis	35–40	0.9% (0-2%)
Live birth rate (triplets) after tubal reanastomosis	35–40	0.011% (0-0.3%)
IVF live birth rate singleton	35–40	19.5% (10–30%)
IVF live birth rate twins	35–40	9.2% (6-24%)
IVF live birth rate triplets or more	35–40	1% (0–3%)
Live birth rate (singleton) after tubal reanastomosis	>40	49.32% (50-100%)
Live birth rate (twins) after tubal reanastomosis	>40	0.68% (0-2%)
Live birth rate (triples or more) after tubal reanastomosis	>40	0.0085% (0-0.3%)
IVF live birth rate singleton	>40	10.1% (5–15%)
IVF live birth rate twins	>40	4.7% (6–24%)
IVF live birth rate triplets or more	>40	0.49% (0-3%)

Cost Effectiveness: Reversal If IVF costs are > \$4500,

- L/S reanastomosis after a prior clip or ring tubal ligation for women ≤40 years old.
- L/S reanastomosis after other methods tubal ligation for women ≤35 years old.

Making an opening on the two tubal ends.

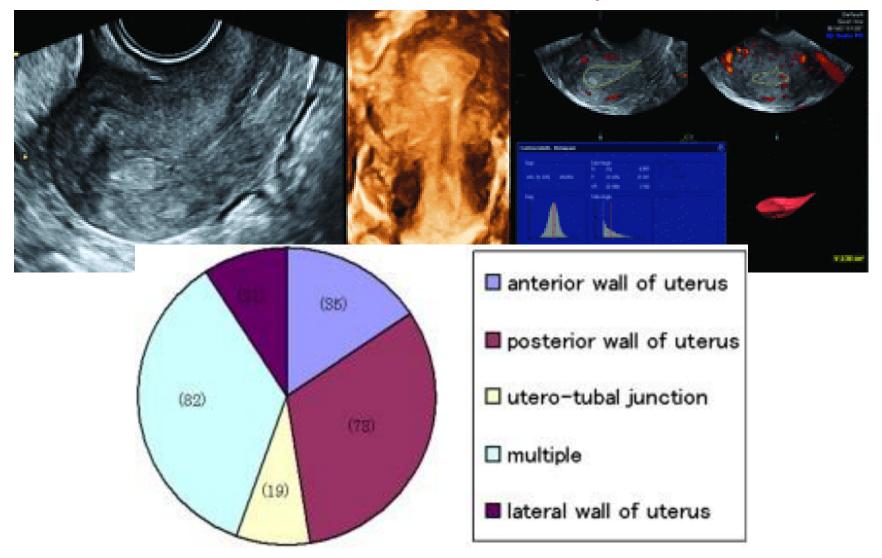
Moon H S et al. Hum. Reprod. 2012;27:1657-1662

© The Author 2012. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

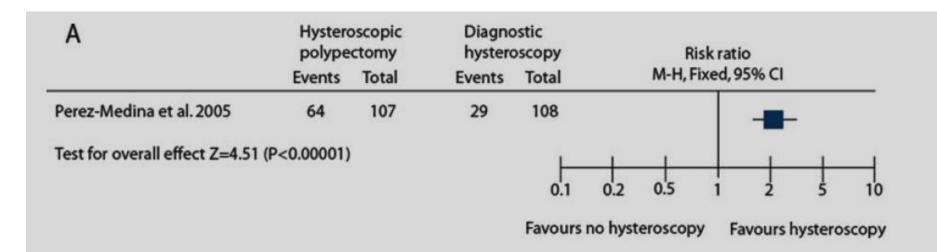
human reproduction

Comparison IVF vs Unilateral Reversal

Pregnancy	Tubal Reversal n=58	<i>IVF n</i> =76	χ ² value ^a
Clinical	32 (55.2%)	12 (15.8%)	<.001
Ectopic	1 (1.7%)	1 (1.3%)	.85
	Pregnancy ra	tes (%)	
Age (years)			1
<30	15/31 (48%)	6/33 (18%)	.01
30–37	14/24 (58%)	5/29 (17%)	.002
>37	3/3 (100%) 1/14 (1%)		.001
Ligation interval	(years)		
<5	12/19 (63%)	7/38 (18%)	.001
5–10	11/28 (39%)	2/18 (22%)	.04
>10	9/11 (82%)	3/20 (15%)	<.001


Uterine Reproductive Surgery

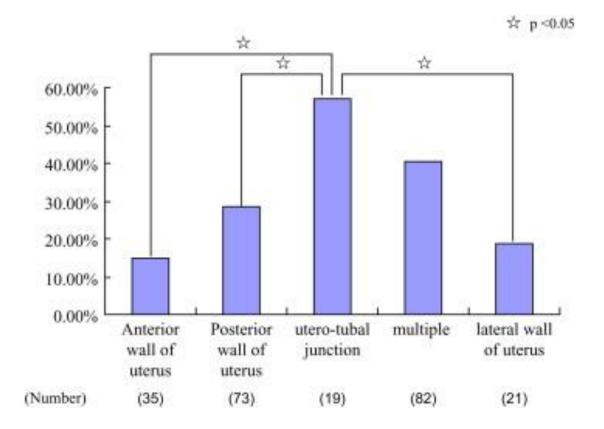
- 1. Endometrium
 - 1. Endometrial Polyps
 - 2. Submucosal Fibroids
 - 3. Intrauterine synesia Asherman synd


2. Myometrium

- 1. Intramural Fibroids
- 2. Mullerian Anomalies
- 3. Uterine Transplantation

Endometrial Polyps

H/S Polypectomy Pregnancy Outcomes



Spontaneus and with IUI PRs are increased in polypectomy cases (RR:2.3,%95 CI:1.6-3.2) (evidence level 1–).

NNT:3

Perez-Medina et al.,2005(RCT) Jan Bosteels et al, Human Reprod 2010,

Endometrial Polyps: Location

Endometrial Polyps: Size

Table 4. Main outcome variables for the three groups of patients.

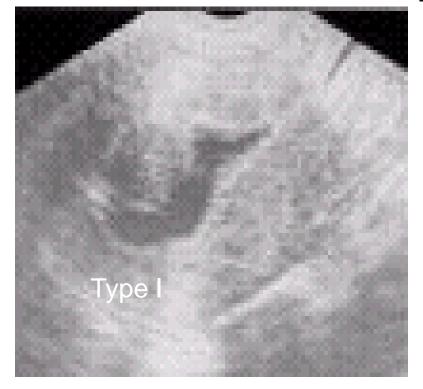
Parameter	Group I ^a	Group II ^a	Group III ^a
Implantation rate% Clinical pregnancy/ embryo transfer (%)	26.4 8 (53.3)	17.6 18 (45.0)	17.9 325 (40.1)

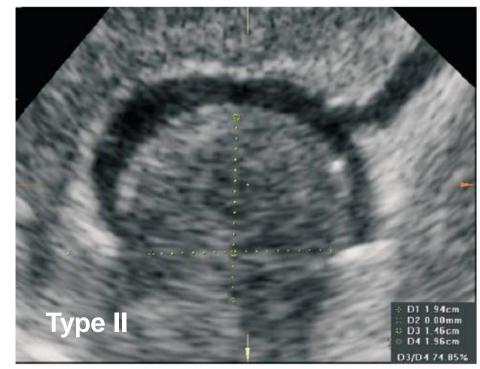
*Chi-squared test showed no statistically significant differences between groups. *For description of the groups, see Materials and methods.

1.5-2 cm polyps does not interfere with PRs and outcomes.

Lass et al. 1999

Isıkoglu et al 2006


The polyps are interfere with PRs and outcomes irrespective of the size and number.


Stamatellos et al. 2008 Preutthipan & Herabutya et al 2005 Perez-Medina et al., 2005

ESGE Classification

Type 0: fibroid polyp. Type I: <50% contained within the myometrium. Type II: >50% contained within the myometrium.

Uterine Fibroids

- 1. Myomas not distorting the cavity
- 2. Myomas distorting cavity

- Hysteroscopic resection of submucous myomas is now well established and is the preferred approach
- Advanced intramural part of submucosal myoma, " one-or two step surgery required"

Hysterescopic Myomectomy

TABLE 3

Effect of fibroids on fertility: submucous fibroids.

Outcome	Number of studies/ substudies	Relative risk	95% confidence interval	Significance
Clinical pregnancy rate	4	0.363	0.179-0.737	P=.005
Implantation rate	2	0.283	0.123-0.649	P=.003
Ongoing pregnancy/live birth rate	2	0.318	0.119-0.850	<i>P</i> <.001
Spontaneous abortion rate	2	1.678	1.373-2.051	P=.022
Preterm delivery rate	0	-	_	_
Pritts. Fibroids and infertility. Fertil Steril 2009.				

Submucous myomas and their implications in the pregnancy rates of patients with otherwise unexplained primary infertility undergoing hysteroscopic myomectomy: a randomized matched control study

Tarek Shokeir, M.D., Muhammed El-Shafei, M.D., Hamed Yousef, M.D., Abdel-Fattah Allam, M.D., and Ehab Sadek, M.D.

Department of Obstetrics and Gynecology, Fertility Care Unit, Mansoura University Hospital, Mansoura Faculty of Medicine, Mansoura, Egypt

	Pregnancy rates		
Myoma characteristic	Myomectomy Study (n = 101)	No myomectomy Control (n = 103)	<i>P</i> value
<5	68.0	69.6	
5–10	56.2	53.3	
11–20	61.5	58.3	
>20	61.1	61.5	
Number, %			NS
1	44.4	40.9	
≥2	36.4	30.0	NS
Type, %			
0	57.9	33.3	<0.001
	35.7	17.2	<0.001
II	31.3	29.0	NS
Location, %			NS
Fundal	50.0	53.8	
Lower uterine segment	41.5	42.1	

The uterus and fertility

Elizabeth Taylor, M.D., and Victor Gomel, M.D.

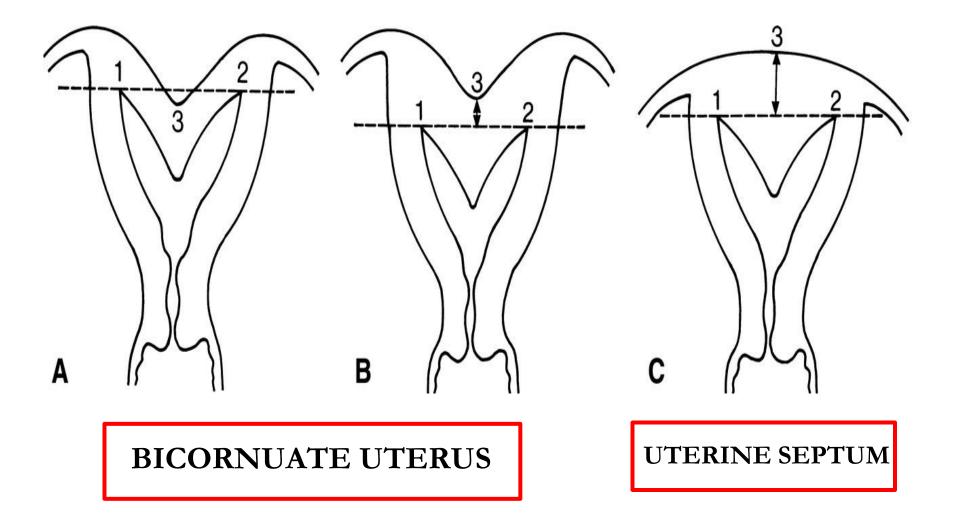
Department of Obstetrics and Gynecology, University of British Columbia, BC Women's Hospital and Women's Health Centre, Vancouver, British Columbia, Canada

Objective: To review the current understanding of the role the uterus plays in embryo implantation and to outline congenital anomalies and acquired diseases that impact normal uterine function.

Design: The publications related to the embryo implantation, Mullerian anomalies, uterine polyps, uterine synechiae, and myomas were identified through Medline and reviewed.

Conclusion(s): Congenital anomalies and acquired diseases of the uterus may negatively impact on the complex processes of embryo implantation. Hysteroscopic surgery to correct uterine septa, intrauterine synechiae, and myomas that distort the uterine cavity may benefit women with infertility or recurrent pregnancy loss. The effect of endometrial polyps on fertility is uncertain, but their removal, once identified, is justifiable. Complex congenital anomalies such as unicornuate uterus and uterus didelphys may negatively affect fertility and pregnancy outcome, and surgical treatment may benefit select patients. (Fertil Steril* 2008;89:1–16. ©2008 by American Society for Reproductive Medicine.)

Key Words: Uterus, implantation, iInfertility, Mullerian anomalies, endometrial polyps, intrauterine adhesions, uterine leiomyoma


• Hysteroscopic resection of Submucous & intramural fibroids with distortion increases clinical PRs.

Tarek Shakeir et al. Arch Gynecol Obstet 2005

• Diameter is correlated with treatment success.

Fernandez et al. Hum Reprod 2001

Bicornuate uterus – septum difference

Mullerian Anomalies: Management

Unicornuate	Uterine	Bicornuate	Arcuate	Septate uterus
uterus	didelphys	uterus	uterus	
Expectant therapy Cervical lengt measurement Cervical cerclage for special cases Rudimenter horn resection	Surgery is not essential Metroplasty for special cases	Expectant therapy Cervical cerclage for special cases	Expectant therapy	Hysteroscopic metroplasty

Reproductive Outcome: Septum

Comparison of reproductive outcome before and after hysteroscopic metroplasty for the septate uterus in selected series.

			Before metroplasty			After metroplasty			
Author (ref.)	No. of patients	No. of pregnancies	No. of miscarriages (%)	No. of preterm deliveries (%)	No. of term deliveries (%)	No. of pregnancies	No. of miscarriages (%)	No. of preterm deliveries (%)	No. of term deliveries (%)
Chervenak and Neuwirth (72)	2	3	3 (100)	0	0	2	0	0	2 (100)
Daly et al.* (70)	17	40	34 (85)	5 (12.5)	1 (2.5)	9	2 (22)	1(11)	6 (67)
De Cherney and Polan* (81)	15	NR.	>30	NR	NR	11	2 (18)	0	9 (82)
Israel and March* (71)	12	28	26 (93)	0	2 (7)	2	1 (50)	0	1 (50)
De Cherney et al. (79)	103	NR.	>206	NR	NR	>71	>8	1	NR
Valle and Sciarra* (18)	12	42	30 (71)	12 (29)	0	10	2 (20)	2 (20)	6 (60)
Fayez (20)	12	21	19 (90)	2 (10)	0	16	2 (13)	0	14 (87.5)
March and Israel (16)	57	240	212 (88)	21 (9)	7(3)	56	8 (14)	4 (7)	44 (79)
Perino et al. (33)	24	27	24 (89)	3(11)	0	15	1 (7)	0	14 (93)
Daly et al. (69)	55	150	130 (87)	13 (9)	7 (5)	75	15 (20)	5 (7)	55 (73)
Choe and Baggish (17)	14	38	31 (82)	6 (16)	1(3)	12	1 (8.3)	1 (8.3)	10 (83.3)
Fedele et al. (73)	71	>139	>139	NR	NR	65	10 (16)	10 (16)	45 (69.2)
Cararach et al. (74)	62	176	160 (91)	11 (6)	5 (3)	41	12 (29)	0	29 (48)
Pabuccu et al. (76)	49	108	96 (89)	11 (10)	1(1)	44	2 (4.5)	2 (4.5)	40 (9.1)
Valle (77)	115	299	258 (86.3)	28 (9.4)	13 (4.3)	103	12 (12)	7 (7)	84 (81)
Mencaglia and Tantini† (40)	94	NR	>94	NR	NR	62	4 (6)	ò	58 (94)
Total	658	1,062	933 (88)	95 (9)	34 (3)	491	67 (14)	29 (6)	395 (80)

Note: NR = not recorded.

* Not included in total to avoid duplication of patients.

† Not included in total because of incomplete data.

- Abortion rate decreases from 88% to %4 after resection.
- Live birth rate increases from 3% to %80 after resection.

Homer et al., 2000

Results after hysteroscopic metroplasty

Event leading to diagnosis and pregnancy outcome after metroplasty for different septum sizes, n = 114.

	Septum size ½	Septum size ½	Septum size $> \frac{1}{2}$
Diagnostic event:	10 (8.8% of n)	18 (15.8% of n)	86 (75.4 % of n)
Infertility workup	4 (40%)	7 (39%)	27 (31%)
First trimester miscarriage	4 (40%)	4 (22%)	18 (21%)
Premature delivery	_	2 (11%)	7 (8 %)
Normal delivery	_	1 (6%)	1 (1 %)
Threeor more miscarriages	1 (10%)	3 (17%)	22 (26%)
C-section	1 (10%)	1 (6%)	11 (13%)
Pregnancy outcome after metroplasty	с.		
No pregnancy	7 (70%*)	6 (40 % ^a)	11 (14.1%)
Live birth	3 (30%*)	5 (33.3 %*)	64 (82% [®])
Miscarriage	_	4 (26.7 %*)	3 (3.8%*)
Desired fertility	10 (100%)	15 (100%)	78 (100%)
		(3 had no desire)	(8 had no desire)

The percentages are derived from the 100% value of desired fertility.

Istre. Results after hysteroscopic metroplasty. Fertil Steril 2010.

If the septum size is >1/2 of uterine cavity, patient may benefit from hysteroscopic metroplasty

Istre et al, Fertl Steril 2010

Hysteroscopic metroplasty: reproductive outcome in relation to septum size

Recent studies demonstrate that hysteroscopic metroplasty in cases of partial uterine septum and infertility **significantly improves the reproductive performance:**

-Irrespectively of septum size, -Reproductive outcome is independent from previous obstetrics history.

Paradisi et al., 2013

Hysteroscopic Resection of Uterine Septum and Reproductive Outcome in Women with Unexplained Infertility

Panagiotis Bakas Odyseas Gregoriou Dimitrios Hassiakos Angelos Liapis Maria Creatsas Sokratis Konidaris

Second Department of Obstetrics and Gynecology, Aretaieio Hospital, University of Athens, LHTO Maternity Hospital, Athens, Greece

If such a patient is looking for a spontaneous pregnancy, this is more likely to occur **during the first 15 months following the procedure.**

Gynecol Obstet Invest 2012

Cervical Septum: Reproductive Outcomes

Reproductive outcome after surgery in the two groups of women who underwent hysteroscopic metroplasty.

Variable	Group A (n = 15)	Group B (n = 13)	Р
Mean period of follow-up	13.13 ± 5.35	12 ± 4.56	.555
No. of women who became pregnant with	12 (80%)	10 (76.9%)	1.00
in a period of 4–14 months			
No. of patients who needed cerclage	4 (26.7%)	2 (15.4%)	.655
Single	15 (100%)	13 (100%)	—
First-trimester abortion	2 (13.3%)	0	.484
Late abortion	0	0	—
Preterm deliveries	4 (26.7%)	4 (30.8%)	1.000
No. of neonates that survived	13 (86.7%)	11 (84.6%)	1.000
Cesarean section	2 (13.3%)	7 (53.8%)	<.05

Parsanezhad. Management of complete uterine septum. Fertil Steril 2006.

Cervical septum resection is suggested for the patient with complet septum

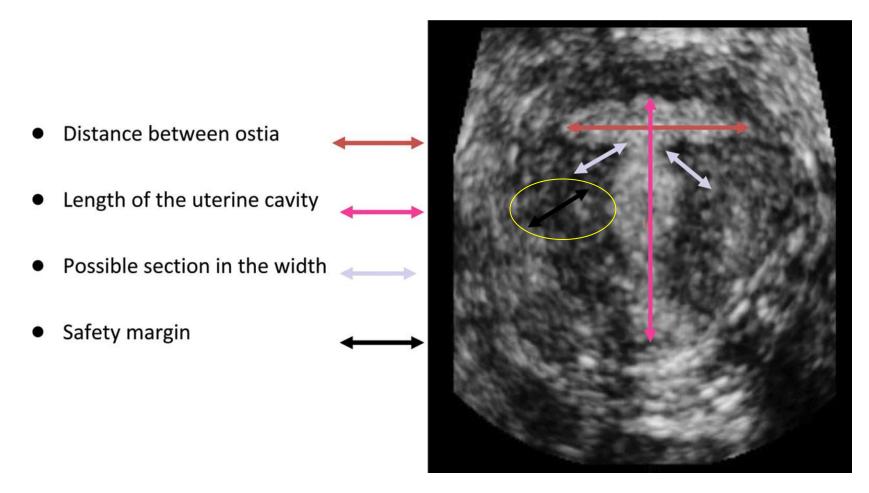
Parsanezhad et al., Fertil Steril 2006

Management and reproductive outcome of complete septate uterus with duplicated cervix and vaginal septum: review of 21 cases.

- Group 1 11 patient uterine septum+
 - -hysteroscopic metroplasty
 - -vaginal septum cut
 - -cervical septum preserved
- □ Group 2 10 patient uterine septum+
 - 4 patient vaginal septum cut
 - 2 patient L/S adhesiolysis
 - 4 patient No intervention

In group 1, the pregnancy rate is 81.8%, where it is 50% in group 2.

The uterine septum may not necessarily be transected for patients who have complete septate uterus with duplicated cervix and vaginal septum, and meanwhile have no a history of poor reproductive outcome.


T-shaped Uterus: Outcomes

Iterine malformation	Patients, n	Pregnancies, n	Stratification	Before surgery, %	After surgery, %
roup 1			Previous abortions		
T-shaped uterus	17	21	2	5.67	69.7
Group 2			3-4 >4	6.26 1.52	56.5 26.3
Septum	2	3	Uterine malformati		2010
1	20	07	Group 1	0	66.7
Septum partial	70	86	Group 2	6.2	62.8
Group 3			Group 3	6	55.6
Arcuate with fibrosis	50	67	Elounos nonnosor		
Arcuate	31	41	Figures represer	that never had a	term pregnanc
	~ *			previous term p	

1. The term delivery rate was about 10-fold higher after surgery.

2. T-shaped uterus surgery yielded the best term delivery rate.

Essential preoperative measurements of T-shaped uterus.

Fernandez H et al. Hum. Reprod. 2011;26:1730-1734

© The Author 2011. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

human reproduction

Reproductive Outcomes: T-shaped uterus.

	Preoperative	Post-operative		
		Primary infertility	Secondary infertility	
Number	78	31	26	
Miscarriage	61 (78.2%)	9 (29%)	7 (26.9%)	
Ectopic pregnancy	14 (17.9%)	5 (16.1%)	0	
Preterm delivery	3 (3.8%) (Neonatal death)	3 (9.7%)	5 (19.2%)	
Term delivery	0	14 (45.2%)	14 (53.8%)	
Live birth	0	17 (54.8%)	19 (73.1%)	

Fernandez H et al. Hum. Reprod. 2011;26:1730-1734

human reproduction

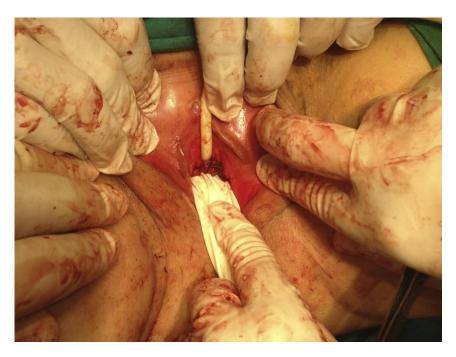
Recommendations: 2014

Hysteroscopy should be carried out to exclude any intracavity uterine pathology; it has been shown to improve outcome (evidence level 1+).

- Submucosal fibroids have been shown to reduce IRs, PRs & LBRs; removal of submucosal fibroids improves implantation rate (evidence level 1+).
- Intramural fibroid with distorted cavity or > 5 cm should be removed (evidence level 3).
- Uterine septum increases miscarriage rate; its removal improves outcome (evidence level 2+).
- Intrauterine adhesions should be removed those recognized to cause of thin endometrium not responding to OS (evidence level 4).
- Endometrial scratch should be considered in the luteal phase of the cycle immediately preceding IVF treatment; it improves IR & outcome in women with unexplained RIF (evidence level 1–).

Vulva and Vagina

- 1. Reproductive Surgeries
 - Vaginal septum resections
 - OHVİRA synd
- 2. Reconstructive Surgeries
 - Neovagen operations


Neovagen Methods

Satisfactory vaginal creation usually can be managed non-surgically with successive vaginal dilation. Patients should be thoroughly counseled and prepared psychologically before the initiation of any treatment. Evaluation for associated congenital renal anomalies or other anomalies is also important.

- 1. Frank's nonsurgical method
- 2. Abbe`- McIndoe operation
- 3. L/S modified Vecchietti's technique
- 4. L/S Davydov technique
- 5. Sigmoid interposition vaginoplasty
- 6. ADM Biological Greft

Neovagen Methods

				FSFI				
	Method, N	Age	Dur.	Desire	Arousal	Lubr.	Orgasm	Satisfaction
Communal PH, 2003	Sigmoid 16	18 (17– 22)	2 yrs	4.7 ± 0. 9	4.9 ± 0.6	5.0 ± 0 .9	5.3 ± 0.8	4.7 ± 1.6
Carrard C, 2011	Sigmoid 48	19	6 yrs	4.36 ± 0 .9	4.74 ± 0 .7	5.18 ± 0.9	4.44 ± 1 .1	5.35 ± 0.6
Zhu, 2013	Frank Method 11	23.6 (16–	2yrs	4.65 ± 1 .3	5.10 ± 1 .0	5.10 ± 1.1	4.80 ± 0 .9	5.40 ± 1.2
	ADM 53	29)		3.8 ± 0.9	4.1 ± 1.00	5.5 ± 0 .7	$3.8 \pm 1.$ 3	5.0 ± 1.0

ADM = acellular dermal matrix; FSFI = Female Sexual Function Index; MRKH = Mayer-Rokitansky-Küster-Hauser

ADM Biological Matrix Vaginoplasty

Time	Procedure	No. of patie nts	No. of effective responses
4-weeks	Assessment of wound healing and anatomic results	53	53 (100%)
12-weeks	Assessment of anatomic results	53	53 (100%)
	Assessment of sexual outcomes		
1-year	Body image perception	42	42 (100%)
	FSFI questionnaire	32	24 (75%)

FSFI = Female Sexual Function Index; MRKH = Mayer-Rokitansky-Küster-Hauser

Thanks

Be Wise, Be Simple