WHAT IS NEW IN RIF?

Dr. Bulent Urman American Hospital, ISTANBUL Koc University School of Medicine

Probability of failed implantationgood quality cleavage stage

Number of embryos transferred	Probability of failed implantation
1	70%
2	49%
3	34%
4	24%
5	17%
6	12%

Probability of failed implantationpoor quality cleavage stage

Number of embryos transferred	Probability of failed implantation
1	90%
2	73%
3	66%
4	59%
5	53%
6	48%

Probability of failed implantationgood quality blastocyst stage

Number of embryos transferred	Probability of failed implantation
1	60%
2	36%
3	22%
4	13%

How do I define RIF?

Failed implantation beyond chance occurrence

Definition of RIF

- Number of cycles
- Number of embryos
- Cleavage vs blastocyst embryos
- Fresh vs frozen embryos

Failure to achieve a clinical pregnancy after transfer of at least 4 good-quality embryos in a minimum of three fresh or frozen cycles in a woman under the age of 40 years (Couglan et al. RBM Online 2014)

Pragmatic classification of RIF

Expected-recurrent IVF failure

Unexpected-recurrent implantation failure

Expected RIF

- Advanced maternal age
- Reduced ovarian reserve
- Poor quality embryos
- Atrophic endometrium

Do we need to investigate further?

Expected RIF-anticipated implantation rate<=10%

Cycle number	Number pregnant out of 100
0	0
1	10
2	19
3	24
4	31

App 70% of patients not pregnant after 4 treatment cycle

Poor quality embryos vs embryos with diminished potential to implant

- Poor oocyte quality-poor embryo development and fertilization
 - Advanced maternal age
 - Poor ovarian reserve
 - Abnormal cumulus cell gene expression profile
- Sperm DNA damage-poor embryo development and fertilization
 - Smoking
 - Genital tract infections
 - Chemo-radiotherapy
- Genetic factors
 - Translocations (x2.5 in the RIF population)
 - Epigenetic factors

Unexpected RIF

Young age Good quality embryos
No pelvic pathology on routine scan

Unexpected RIF-anticipated implantation rate >=30%

Cycle number	Number pregnant out of 100
0	0
1	30
2	51
3	65
4	75

App 25% of patients not pregnant after 4 treatment cycle

Evaluation of RIF

- Imaging of the pelvis
 - Uterus
 - Ovaries
 - Tubes
- Hysteroscopy
- Evaluation of possible immunological problems
- Genetic factors

Detailed Imaging

 Transvaginal high resolution US+3Dintracavitary and intramural lesions

• HSG-synechia, hydrosalpinx

MRI-adenomyosis, fibroids

REPRODUCTIVE ENDOCRINOLOGY AND INFERTILITY Fibroids and reproductive outcomes: a systematic literature review from conception to delivery

Peter C. Klatsky, MD; Nam D. Tran, MD, PhD; Aaron B. Caughey, MD, PhD; Victor Y. Fujimoto, MD

TABLE 1 Submucosal fibroids

	Chudu dasian	Fibraid diamatar	Implantation rate ^a		Clinical pregnancy rate ^b		Spontaneous abortion rate ^c	
	number of patients	mean (range)	Fibroids	No fibroids	Fibroids	No fibroids	Fibroids	No fibroids
Farhi et al ^{7d}	Retrospective cohort. 18 IM fibroid patients, 50 controls	(<70 mm)	2.7% 5/179	9.8% 35/357	9.7% 5/55	25.2% 32/127	40% 2/5	25% 8/32
Eldar-Geva et al ^{9d}	Retrospective cohort. 6 study patients, 249 controls.	45 mm ± 26	4.3% 1/23	12.3% 94/763	10% 1/10	30.8% 98/318	0% 0/1	16.3% 16/98
Cassini et al ¹⁴ (SM)	Prospective, observational. Spontaneous conceptions, following timed intercourse.	(<40 mm)			21.4% 9/42	40.4% 21/52	55.6% 5/9	42.9% 9/21
Cumulative rates			3.0% 6/202 OR 0.39 (0.24-0.65)	11.5% 129/1120	14% 15/107 OR 0.44 (0.28-0.70)	30.4% 151/497	46.7% 7/15 OR: 3.85 (1.12-13.27)	21.9% 33/151

IM, intramuscular; OR, odds ratio; SM, submucosal.

^a No. of sacs per no. of embryos transferred.

^b No. of cycles with a gestational sac or living embryo per transfer.

^e Clinical miscarriage after documented clinical pregnancy.

d Included repeat cycles in the same patient.

Klatsky. Fibroids and reproductive outcomes. Am J Obstet Gynecol 2008.

Am J Obstet Gynecol 2008

The effect of non-cavity-distorting fibroids on IVF outcome

ludy	Fibroids n/N	No fibroids n/N	RR (random) 95% Cl	VVeight %	RR (random) 95% Cl
Aboulghar 2004	10/33	36/100		2.80	0.84 [0.47, 1.50]
lozdag in press	22/61	168/444		6.29	0.95 [0.67, 1.36]
check 2002	21/61	29/61		4.57	0.72 [0.47, 1.12]
Dietterich 2000	5/9	7/11		1.82	0.87 [0.42, 1.82]
idar-Geva 1998	9/55	98/318		2.49	0.53 [0.29, 0.99]
lorcajadas 2008	429/807	80/135		15.91	0.90 [0.77, 1.05]
un 2001	43/141	169/406		8.98	0.73 [0.56, 0.96]
latsky 2007	22/69	149/275		6.12	0.59 [0.41, 0.84]
fanzo 2006	13/65	85/366		3.38	0.86 [0.51, 1.45]
lejad 2007	20/94	42/184		4.01	0.93 [0.58, 1.49]
lg 2005	11/50	7/50		1.35	1.57 [0.66, 3.72]
Niveira 2004	76/163	110/245	-	11.91	1.04 [0.84, 1.29]
tinehart 1999	5/24	7/24		1.02	0.71 [0.26, 1.94]
toval 1998	34/91	48/91		7.01	0.71 [0.51, 0.98]
Surrey 2001	37/73	191/327		10.36	0.87 [0.68, 1.11]
/imercati 2007	4/31	57/205		1.15	0.46 [0.18, 1.19]
Vang 2004	29/49	34/73		6.75	1.27 [0.91, 1.78]
/arali 2002	16/73	90/324		4.07	0.79 [0.49, 1.26]
otal (95% CI)	1949	3639		100.00	0.85 [0.77, 0.94]
tal events: 806 (Fibroids), 1	407 (No fibroids)		<i>6</i>		
est for heterogeneity: Chi ² = est for overall effect: Z = 3.0	22.88, df = 17 (P = 0.15), I ² = 15 (P = 0.002)	25.7%			

Figure 7 Forest plot of studies of non-cavity-distorting intramural fibroids versus no fibroids in women undergoing IVF treatment for outcome of dinical PRs.

From Sunkara et al. Hum Reprod 2010

Hydrosalpinx

Effect of untreated hydrosalpinx

Table VI. Meta-analysis

Outcome criteria	Group with hydrosalpinx (%)	Group without hydrosalpinx (%)	Odds ratio	Confidence interval
Pregnancy rate	19.67	31.2	0.64	0.56-0.74 ^a
Implantation rate	8.53	13.68	0.63	0.55-0.72 ^a
Delivery rate	13.4	23.44	0.58	0.49-0.69 ^a
Early pregnancy loss rate	43.65	31.11	1.72	1.34-2.20ª

^aOdds ratio significantly different from 1 (P < 0.05).

Camus et al, 1999

Effect of removal of hydrosalpinx

- Odds of pregnancy = 1.75 (1.1-2.9)
- Odds of ongoing pregnancy = 2.13 (1.2-3.7)
- Embryo implantation = 1.34 (0.9-2.1)
- Ectopic pregnancy=0.42 (0.1-2.1)
- Miscarriage=0.49 (0.2-1.5)

Cochrane review Johnson et al. 2002

Endometriosis

- Only 1 study showed that surgical treatment of endometriosis may be beneficial in women with RIF
 - Retrospective
 - 23 patients
 - Almost half of the patients conceived spontaneously after laparoscopy

Adenomyosis

- Recently associated with RIF
- Only 2 prospective studies
- Universal agreement on diagnosis ??
 - USG
 - Doppler
 - MRI

Adenomysosis and outcome of IVF-clinical pregnancy rates

Figure 2 Forest plot showing individual and combined effect size estimates and 95% confidence intervals (Cls) in studies that evaluated the likelihood of clinical pregnancy in infertile women with or without adenomyosis undergoing IVF/ICSI. Horizontal lines indicate 95% Cls; boxes show the study-specific weight; diamond represents combined effect size; dashed line indicates the overall estimate. From Vercellini et al. Hum Reprod 2

Adenomysosis and outcome of IVF-miscarriage rates

Figure 3 Forest plot showing individual and combined effect size estimates and 95% confidence intervals (CIs) in studies that evaluated the risk of miscarriage in clinical pregnancies obtained at IVF/ICSI in women with or without adenomyosis. Horizontal lines indicate 95% CIs; boxes show the studyspecific weight; diamond represents combined effect size; dashed line indicates the overall estimate.

From Vercellini et al. Hum Reprod 2

Hysteroscopy-emerging role in IVF and RIF

Prior to the first IVF cycle After implantation failure/s

Outpatient hysteroscopy

After 2 or more failed cycles 15-40% of patients will have an intra-cavitary lesion

(Olivera et al., 2003; Levi Setti, 2004; Urman, 2005)

- Polyps
- Adhesions
- Small fibroids
- Arcuate/subseptate uterus
- Endometritis
- Hyperplasia

Problems associated with hysteroscopic cavity evaluation

- Inter/intra-observer agreement regarding both normal and abnormal findings
- The significance of abnormal findings is not clear
- Whether treatment improves implantation rates is unknown

evaluation of the uterine cavity prior to IVF

Table II Findings of the hysteroscopy performer atreal-time hysteroscopy.

Findings	Prevalence	(%)
Normal cavity	94	87.9
Abnormal cavity	l 3 ^a	12.1
Polyp	12	11.2
Myoma	I. Contraction	0.9
Adhesion	0	0.0
Septa	2	1.9
Total	107 ^a	100

^aIn two cases more than one abnormality was detected.

From Kasius et al. Hum Reprod 2011

Table III Level of overall perfect observer agreement expressed in κ coefficients/ICC^a.

Finding	Intraobserver agreement (%)	к	95% CI
Normal cavity	93.5	0.707	0.517-0.897
Polyp	93.5	0.683	0.463-0.903
Myoma ^b	99.1	0.662	0.043-1.281
Adhesions ^b	99.1	-0.009	-0.198-0.180
Septum ^b	100	1.000	c
Finding	Interobserver agreement (%)	ICCª	95% CI
Normal cavity	77.6	0.491	0.378-0.598
Polyp	83.2	0.511	0.399-0.616
Myoma ^b	95.6	0.281	0.161-0.406
Adhesions ^b	96.3	-0.018	-0.116-0.100
Septum ^b	93.8	0.475	0.360-0.584
Septum	93.8	0.475	0.360-0.584

^aICC, intraclass correlation coefficient (equivalent of the overall weighted κ) (Fleiss and Cohen, 1973).

^bThe discrepancy between the perfect agreement and mean κ value is caused by the low prevalence of these abnormalities (Feinstein and Cicchetti, 1990).

^cImpossible to compute with ordinary statistics, as also used by SPSS version 15.1.

Agreement on the diagnosis of septate uterus

Opinion on uterine shape.

Smit. Hysteroscopic agreement on septate uterus. Fertil Steril 2013.

Normal Arcuate Septate Missings

Seventy-eight observers from 24 different countries assessed 8 hysteroscopy recordings. The interobserver agreement on uterine shape variations septate and arcuate was fair (intraclass correlation coefficient 1/4 0.27). The agreement among international experts on the hysteroscopic diagnosis of the septate uterus was found to be poor.

From Smit et al. Fertil Steril 2013

Chronic endometritis

- Does it really exist?
- □ Is it a distinct clinical entity or an incidental finding?
- Is there a proven specific treatment for the condition?

Chronic endometritis is a significant finding in patients with RIF and should be treated

	Patient data: mean ± SD.				
		Group 1 (n = 10)	Group 2 (n = 23)	Group 3 (n = 485)	P value
	Age (years)	34.5 ± 3.27	34.69 ± 3.34	36.0 ± 0.17	NS
	Number of previous failed cycles (n)	3.0 ± 1.63	2.73 ± 0.91	2.9 ± 0.03	NS
	Number of mature oocytes retrieved (n)	14.7 ± 3.2	12.7 ± 1.3	10.4 ± 0.2	NS
	Fertilization rate %	72.0 ± 0.12	63.9 ± 0.05	67.1 ± 0.01	NS
	Good-quality ET (n)	2.1 ± 0.87	1.69 ± 1.01	1.75 ± 0.55	NS
_	ET (n)	2.6 ± 0.96	2.39 ± 1.19	3.1 ± 0.04	.001
1	Implantation rate % (n)	11.5 (3/26)	32.7 (18/55)	20.3 (301/1485)	.0024
	Clinical pregnancy rate % (n)	20 (2/10)	52.1 (12/23)	40.6 (197/485)	NS
	Clinical loss Rate % (n)	10 (1/10)	0 (0/23)	6.2 (30/485)	NS
	Ongoing pregnancy rate % (n)	10 (1/10)	52.1 (12/23)	34.4 (167/485)	NS
	Johnston-MacAnanny. Chronic endometritis in RIF. Fertil Steril	2010.			

Group 1-Patients with chronic endometritis (confirmed by immunohystochemistry) Group 2-Patients who did not have chronic endometritis Group 3-Patients who did not undergo endometrial biopsy

From Johnston-McAnanny et al. Fertil Steri

Chronic endometritis has no effect on IVF outcome!

TABLE 2

IVF/ICSI results of the patients with chronic endometritis (case subjects) compared with control subjects.

Variables	Case (n = 17)	Control (n = 68)	Significance
No. of started cycles ^a	$\textbf{2.5} \pm \textbf{2.1}$	2.5 ± 1.8	.91 ^b
Fresh cycles	2.2 ± 1.9	1.8 ± 1.2	.33 ^b
Cryocycles	0.3 ± 0.8	0.7 ± 1.3	.09 ^b
No. of embryo transfers	2.0 ± 1.6	2.2 ± 1.7	.70 ^b
No. of embryos transferred per cycle	1.4 ± 0.5	1.4 ± 0.4	.45 ^b
Live birth	13 (76%)	37 (54%)	.11°

Note: The control group consisted of a randomly selected sample of patients without endometritis, matched for the research hospital and day of menstrual cycle on which the biopsy was performed. Values are expressed as mean ± SD or n (%).

^a Number of started cycles within 3 years after the start of the initial trial (TEA trial, registration no. NCT00830401) or until a live birth was obtained or treatment was stopped.

^b Student *t* test.

^c Chi-square test.

Kasius. Chronic endometritis and fertility. Fertil Steril 2011.

From Kasius et al. Fertil Steril 2012

Is it cost effective to do hysteroscopy in every patient undergoing IVF?

Hysteroscopy improves implantation regardless of abnormal findings Endometrial injury effect Hysteroscopy improves implantation only if an intracavitary lesion is corrected

Uterine instrumentation during hysteroscopy could cause a degree of endometrial injury and provoke an immunological reaction that involves the release of cytokines and growth factors, which in turn may influence the likelihood of implantation

COST EFFECTIVE

2000 Euro per additional live birth

NOT COST EFFECTIVE 15800 Euro per additional live birth

From Kasius et al. Hum Reprod 2011

Endometrial injury vs no injury

Table 3 Implantation rates in the intervention and control groups.

Study	Design	Endometrial injury (%)	Control (%)	P-value*
Barash et al. (2003)	NR	27.7	14.2	0.0001
Karimzadeh et al. (2009)	RCT	10.9	3.38	0.039
Narvekar et al. (2010)	RCT	13.07	7.1	0.04
Raziel et al. (2007)	NR	11.0	4.0	0.02

NR = non-randomized; RCT = randomized controlled trial. *Significance level of <0.05.

From Potdar et al. RBM Online 2012

Endometrial injury and/or hysteroscopy

	Inju	ry .	No inj	ury		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 Hysteroscopy							
Demirol and Gurgan 2004	50	154	45	211	17.5%	1.52 [1.08, 2.15]	+
Makrakis et al., 2009	145	414	104	414	31.4%	1.39 [1.13, 1.72]	-
Rama Raju et al., 2006	71	160	69	265	24.5%	1.70 [1.30, 2.23]	
Subtotal (95% CI)		728		890	73.4%	1.51 [1.30, 1.75]	•
Total events	266		218				
Heterogeneity: Tau ² = 0.00;	$Chi^2 = 1$.34, df	= 2 (P =	0.51);	$l^2 = 0\%$		
Test for overall effect: $Z = 5$.40 (P <	0.0000	1)				
1 1 2 Endometrial bionsy (scratch)						
1.1.2 Endometrial biopsy (scratteri)	45	27		15 40/	2 20 (1 51 2 20)	
Barash et al., 2003	30	45	27	89	15.4%	2.20 [1.51, 3.20]	-
Karimzadeh et al., 2009	13	48	4	45	2.6%	3.05 [1.07, 8.66]	
Narvekar et al., 2010	16	49	7	51	4.3%	2.38 [1.07, 5.28]	
Raziel et al., 2007	18	60	7	57	4.3%	2.44 [1.10, 5.41]	
Subtotal (95% CI)		202		242	26.6%	2.32 [1.72, 3.13]	•
Total events	77		45				
Heterogeneity: Tau ² = 0.00;	$Chi^2 = 0$.39, df	= 3 (P =	0.94);	$l^2 = 0\%$		
Test for overall effect: $Z = 5$.50 (P <	0.0000	1)				
Total (95% CI)		930		1132	100.0%	1.71 [1.44, 2.02]	•
Total events	343		263				
Heterogeneity: Tau ² = 0.01;	$Chi^2 = 7$.99, df	= 6 (P =	0.24);	$l^2 = 25\%$		
Test for overall effect: $Z = 6$.12 (P <	0.0000	1)				0.01 0.1 1 10 100
Test for subgroup difference	s: $Chi^2 =$	6.29, 0	df = 1 (P	= 0.01	1), $ ^2 = 84$.1%	Favours control Favours injury

(hysteroscopy and endometrial biopsy) and control group From Potdar et al. RBM Online 2

Can immunological disorders be implicated in RIF? Marketing dream academic nightmare Immunological disorders associated with RIF

- Autoantibodies
- Thrombophilia
- Antithyroid antibodies
- Abnormal NK cell number/function

Antibodies in IVF patients

Autoantibody	Frequency in infertile women	Infertility Association	Known associations
Antiphosholipid	Increased	Unproven	Recurrent pregnancy loss
Antithyroid	Slightly increased	Unproven	Thyroiditis, miscarriage
Antigliadin	Slightly increased	Unproven	Celiac disease
Antisperm	No difference	Unproven	Fertilization failure
Antinuclear	Slightly increased	Unproven	Autoimmune disease
Antiovarian	Slightly increased	Unproven	Ovarian failure

TABLE 1

Antiphospholipid antibodies and IVF outcome.

Outcome	Authors	Odds Ratio	(95% CI)
Pregnancy	Birdsall et al (11)	1.65	(0.50, 5.46)
	Denis et al (12)	0.91	(0.42, 1.97)
	El Roiey et al (13)	0.26	(0.04, 1.83)
	Gleicher et al (14)	1.34	(0.36, 4.95)
	Kowalik et al (15)	1.38	(0.52, 3.34)
	Kutteh et al (16)	.85	(0.21, 3.50)
	Sher et al (3)	.55	(0.13, 2.34)
Average for Pregnancy		.99	(0.64, 2.34)
Live Birth	Birdsall et al (11)	1.67	(0.50, 5.56)
	Denis et al (12)	.94	(0.44, 1.98)
	El-Roiey et al (13)	.18	(0.02, 2.14)
	Gleicher et al (14)	1.60	(0.39, 6.53)
	Kowalik et al (15)	1.10	(0.42, 2.90)
Average from Live Birth		1.07	(0.66, 1.75)

ASRM Practice Committee Report, Fertil Steril 2004

Anti-thyroid antibodies

Is their prevalence increased in RIF vs infertile controls?

YES (22-52%)

Birkenfeld, 1994 HR Geva, 1995 HR Bussen, 2000 HR Bellver, 2008 HR Do they reduce success rate of IVF?

Contradictory data

2 studies = yes Geva, 1996 HR Kim, 1998 AJRI

2 studies = no Kutteh, 1999 HR

Negro, 2007 J Endocrinol Invest

Antithyroid AB and IVF outcome

Table 2 Comparison of COS and IVF outcome between ATA+ and ATA- group

Variables	ATA+ Group	Control Group	P-value
Stimulation length(days)	11.0±1.8	10.7±1.7	0.074
Total Gn dose(IU)	2302±864	2246±736	0.885
E2 level on the day of HCG (pg/ml)	2290±1101	2342±1173	0.716
Number of re- trieved oocytes	10.9±6.1	11.8±6.9	0.166
Fertilization Rate	64.3%(729/1134)	74.6%(8848/11856)	<0.001
Number of availa- ble embryos	5.3±3.9	6.0±4.2	0.01
Number of embryo transferred	2.4±0.6	2.3±0.6	0.086
Pregnancy Rate	33.3%(52/156)	46.7%(458/981)	0.002
Implantation Rate	17.8%(66/370)	27.1%(611/2251)	<0.001
Abortion Rate	26.9%(14/52)	11.8% (54/458)	0.002

From Zhong et al. Int J Med Sci 2012

Thrombophilia

Conflicting evidence in relation to RIF

 Five studies (n=600) showed higher prevalence of one or more marker in women with RIF Grandome,
 2001 FS - Azem, 2004 HR - Coulam, 2006 RBM - Qublan, 2006 HR -Bellever, 2008 HR

One study (n=396) showed no difference in prevalence Martinelli, 2003 Haematol

NATURAL KILLER CELLS

Natural killer cells

- NK cells do not need activation in order to kill cells missing self markers of MHC Class I antigens
- Trophoblasts do not express classical MHC I antigens
 - Immune to attack by Maternal T cells
 - Vulnerable to attack by NK cells

% of Endometrial Stromal cells that are NK cells

- Is it worth measuring NK cells?
- Are blood and endometrial levels concordant?
- Is there an effective treatment?
 - IVIG
 - Intralipid
- Does the treatment improve IVF success rates?

Management-accepted

- Remove intracavitary impediments to implantation
 - Fibroids
 - Polyps
 - Septum
- Remove hydrosalpinx
- Improve transfer technique-difficult transfers

Management-less controversial

- Review stimulation protocols
- Mild stimulation
- Freeze all strategy
- Transfer at the blastocyst stage

AUTHOR	YEAR	DESIGN	PR CLEAV	PR BLAST
CRUZ	1999	RETRO	9.1	40.0
LEVITAS	2004	PRO RAND	13.7	29.4
GUERIF	2004	RETRO	19.7	27.9
BARRENETXEA	2005	RETRO	11.0	38.0

Management-more controversial

- Treatment of thrombophilia
- Treatment of thyroid autoimmunity in the euthyroid patient
- Intralipid and IVIG
- Heparin
- PGS
- Intracavitary hCG
- Intracavitary GCSF
- Multi drug approach
 - Antibiotics, aspirin, corticosteroids, multi-agent luteal phase support

Potential actions of heparin on implantation

Human Reproduction, Vol.24, No.7 pp. 1640-1647, 2009

Advanced Access publication on April 8, 2009 doi:10.1093/humrep/dep086

human reproduction **ORIGINAL ARTICLE Infertility**

Luteal phase empirical low molecular weight heparin administration in patients with failed ICSI embryo transfer cycles: a randomized open-labeled pilot trial

B. Urman¹, B. Ata, K. Yakin, C. Alatas, S. Aksoy, R. Mercan, and B. Balaban

Assisted Reproduction Unit of the American Hospital of Istanbul, Guzelbahce Sokak No 20, Nisantasi, Istanbul 34365, Turkey

Correspondence address. Tel: +90-212-3112000; Fax: +90-212-3112339; E-mail: burman@superonline.com

LMWH in women with RIF-with or without thrombophilia

	LMW	н	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% Cl
Berker et al., 2011	23	109	16	101	35.2%	1.33 [0.75, 2.37]	
Qublan et al., 2008	29	139	8	131	28.3%	3.42 [1.62, 7.20]	
Urman et al., 2009	23	96	18	98	36.5%	1.30 [0.75, 2.26]	
Total (95% CI)		344		330	100.0%	1.73 [0.98, 3.03]	•
Total events	75		42				
Heterogeneity: Tau ² :	= 0.15; Cł	1i ² = 4.	99, df =	2 (P =	0.08); I ² =	= 60%	
Test for overall effect	t: $Z = 1.90$	O(P = 0)	0.06)				Favours control Favours LMWH

Figure 5 Implantation rate (IR) in women with \geq 3 recurrent implantation failure and LMWH as treatment adjunct.

	LMW	н	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Berker et al., 2011	1	17	2	12	23.9%	0.35 [0.04, 3.46]	
Qublan et al., 2008	1	13	2	4	31.2%	0.15 [0.02, 1.29]	
Urman et al., 2009	1	16	4	13	45.0%	0.20 [0.03, 1.60]	
Total (95% CI)		46		29	100.0%	0.22 [0.06, 0.78]	-
Total events	3		8				
Heterogeneity: Chi ² =	= 0.28, df	= 2 (P	= 0.87);	$I^2 = 0\%$	5		
Test for overall effect	:: Z = 2.36	6 (P = 0).02)				Favours control Favours LMWH

Figure 6 Miscarriage rate in women with \geq 3 recurrent implantation failure and LMWH as treatment adjunct.

From Potdar et al. HRU 2013

Treatment of anti-thyroid antibodies

Levothyroxine treatment in thyroid peroxidase antibody-positive women undergoing assisted reproduction technologies: a prospective study Human Reproduction Vol.20, No.6 pp. 1529–1533, 2005

Roberto Negro^{1,5}, Tiziana Mangieri², Lamberto Coppola², Giovanni Presicce², Eugenio Caroli Casavola², Riccardo Gismondi², Giancarlo Locorotondo², Paolo Caroli², Antonio Pezzarossa³, Davide Dazzi³ and Haslinda Hassan⁴

Under-powered study - 340 are required

IVIG for treatment of RIF

 Meta-analysis of published trials showed that IVIG significantly improves the live birth rate in couples with unexplained RIF
 NNT = 6
 Clark et al, AJRI 2006; 23: 1-13

But... included 2 unpublished datasets Few RCTs Intralipid therapy for recurrent implantation failure: new hope or false dawn? Shreeve and Sadek J Reprod Immunol 2012

Intralipid

- Contains soya oil, glycerine and egg phosholipids
- Inhibits proinflammatory mediators specifically Th 1 cytokines
- 50% PR rate was achieved in 50 women with high order RIF undergoing Intralipid treatment (Ndukwe 2011)
 - All patients showed a reduction in their Th1/Th2 ratio
- "innovative and risk-free treatment regime" BBC 2011

Preimplantation genetic screening

	P	GS	Cor	trol			
Study or Subgroup	Events	Total	Events	Total	Weight	Risk Difference	Risk Difference, 95% CI
ndication Advanced	Maternal	Age				M-H, Fixed, 95% CI	
Staessen 2004	21	199	29	190	36.6%	-0.05 [-0.11, 0.02]	
Mastenbroek 2007	49	206	71	202	38.4%	-0.11 [-0.20, -0.03]	
lardarson 2008*	3	56	10	53	10.3%	-0.14 [-0.26, -0.01]	
Schoolcraft 2008	16	32	16	30	5.8%	-0.03 [-0.28, 0.22]	
Debrock 2009	6	44	10	50	8.8%	-0.06[-0.21, 0.09]	
Subtotal (95% CI)		537		525	100.0%	-0.08 [-0.13, -0.03]	•
otal events	95	(18%)	136	(26%)			2000
Heterogeneity: Chi ² = :	2.51, df = 4	(P=0	.64); 2 =	0%			
est for overall effect:	Z = 3.38 (F	= 0.00	107)				
ndication Good Prog	nosis Pat	tient			N	1-H, Random, 95% CI	
Staessen 2008*	37	120	37	120	39.7%	0.00 [-0.12, 0.12]	-+-
Jansen 2008*	20	55	27	46	33.3%	-0.22 [-0.41, -0.03]	
Meyer 2009*	6	23	15	24	26.9%	-0.36 [-0.63, -0.10]	
Subtotal (95% CI)		198		190	100.0%	-0.17 [-0.39, 0.04]	
otal events	63	(32%)	79	(42%)			
Heterogeneity: Tau ² =	0.03; Chi ²	= 8.27.	df = 2 (P	= 0.02); I ² = 76%		
Fest for overall effect:	Z = 1.56 (F	P = 0.12	2)				
ndication Repeated	Implantati	on Fail	ure			M-H, Fixed, 95% CI	
Blockeel 2008	15	72	26	67	100.0%	-0.18 [-0.33, -0.03]	-
Subtotal (95% CI)		72	20	67	100.0%	-0.18 [-0.33, -0.03]	-
Total events	15	(21%)	26	26 (39%)			1000
Heterogeneity: Not ap	plicable			Cores.			NO. 24. 1. 1. 1. 1. 1. 1.
Test for overall effect:	Z = 2.35 (F	= 0.02	25				
							-0.5 -0.25 0 0.25 0.5
							Favours Control Favours PG3

* Trial was terminated prematurely.

CI = confidence interval; M-H = Mantel-Haenszel method.

PGS for RIF

- No beneficial effect of PGS with FISH
- No studies with newer techniques such as array CGH

Conclusions-RIF

- Only a few of the potential causes are known
- Most treatment options are experimental and empiric
- Well designed studies are urgently needed

Urman et al. RBM Online 2005