Common protocols in intra-uterine insemination cycles

Doç. Dr. Candan İltemir Duvan Turgut Özal Üniversitesi Tıp Fakültesi Kadın Hastalıkları ve Doğum AD

Ovulation induction with intra-uterine insemination

- Ovulation induction with intrauterine insemination (OI/IUI) is the first-line treatment for couples with;
 - unexplained infertility,
 - minimal and mild endometriosis,
 - co-existing male factor

Ovulation induction with intrauterine insemination

- OI/IUI are combined in order to increase fecundability
- Ovulation induction: monofollicular
- Mild ovarian hyperstimulation (MOH)/Controlled ovarian stimulation (COS): 2-3 dominant follicles

Common protocols in IUI cycles

I) Oral drugs:

- Anti-estrogens (Clomiphene citrate, tamoxifen)
- Aromatase inhibitors (Letrozol, anastrazol))

II) Injectable (gonadotropins) drugs:

- Human menopausal gonadotropins (HMG),
- Purified or recombinant follicle-stimulating hormone (hpFSH, rFSH)

Common protocols in IUI cycles

- The advantages of oral drugs over gonadotropins for OI;
 - Oral administration
 - Low cost
 - Less need for cycle monitoring
 - Low incidence of multiple pregnancies and OHSS

- Since the 1960s, clomiphene citrate (CC) is used for ovulation induction
- Non-steroidal triphenylethylene derivate
- Selective estrogen receptor modulator (SERM)
- Estrogen agonist and antagonist properties
- Acts purely as an anti-estrogen

- Enclomiphene anti-estrogenic, the half-life of enclomiphene is relatively short (62%)
- Zuclomiphene slowly (38%)

mildly estrogenic, cleared much more

Stimulating the normal endocrine mechanisms

Structural similarity to estrogen

Binds to estrogen receptors (extended interval)

At the hypothalamic level, depletes receptor concentration (receptor recycling \downarrow)

prevents accurate interpretation of circulating estrogen levels

GnRH, FSH, LH 个

Clomiphene Citrate (CC)

Effectiveness:

Anovulatory infertil women

The ovulation rate: 70–85% (age, BMI, hyperandrogenemia) The pregnancy rate: 36% The live-birth rate: 29%

3-6 cycles (clomiphene-induced ovulatory cycles)

Effectiveness:

in patients with unexplained infertility;CC plus timed intercourse: 5.6% PR per cycleCC plus intrauterine insemination (CC/IUI): 8.3% PR per cycle

- Clomiphene resistant; If women do not respond to the 50-mg dose, then incremental dose of 50 mg up to 150 mg are given before the patients is labelled as clomiphene resistant
- Clomiphene failure; one or more follicles emerge and grow, ovulation +, pregnancy (-)

Common protocols in IUI cycles

Clomiphene- resistant anovulatory women (15-40%):

- Long term (8 days), high dose (200-250 mg/dl)
- Clomiphene and metformin
- Clomiphene and glucocorticoids
- Pretreatment with oral contraceptive
- Aromatase inh
- Gonadotropins

Addition of metformin

- Improved ovulation in women with insulin resistance and hyperandrogenism associated with PCOS who were resistant to CC
- Metformin was associated with improved clinical pregnancy but there was no evidence that metformin improves live birth rates
- Metformin is not currently licensed for use in the management of PCOS

Cochrane Database Syst Rev. 2012 May

Metformin combined with CC

Cochrane Database Syst Rev. 2012 May

Analysis 2.1. Comparison 2 Metformin combined with ovulation induction agent clomifene versus clomifene alone, Outcome I Live birth rate.

Review: Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility

Comparison: 2 Metformin combined with ovulation induction agent clomifene versus clomifene alone

Outcome: I Live birth rate

Study or subgroup	Met + clomifene	clomifene	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
I Participants with BMI < 30k	g/m2 or ≤32kg/m2				
Boudhraa 2010	11/32	4/31		3.4 %	3.54 [0.98, 12.70]
Moll 2006	21/111	31/114		31.8 %	0.62 [0.33, 1.17]
PCOSMIC 2010 (1)	15/35	13/36		9.4 %	1.33 [0.51, 3.45]
Subtotal (95% CI)	178	181	+	44.7 %	1.00 [0.62, 1.59]
Total events: 47 (Met + clomi	fene), 48 (clomifene)				
Heterogeneity: Chi ² = 6.23, d	ff = 2 (P = 0.04); I ² =68%				
Test for overall effect: $Z = 0.0$	2 (P = 0.99)				
2 Participants with BMI \geq 30	kg/m ²				
Legro 2007	56/209	47/209	+	44.2 %	1.26 [0.81, 1.97]
Sahin 2004	3/11	3/10		2.9 %	0.88 [0.13, 5.82]
Vandermolen 2001	4/12	1/15	+	0.8 %	7.00 [0.66, 73.93]
Zain 2009	7/41	7/41	-+	7.5 %	1.00 [0.32, 3.16]
Subtotal (95% CI)	273	275	+	55.3 %	1.28 [0.86, 1.91]
Total events: 70 (Met + clomi	fene), 58 (clomifene)				
Heterogeneity: Chi ² = 2.33, d	ff = 3 (P = 0.51); I ² =0.0%				
Test for overall effect: $Z = 1.2$	4 (P = 0.22)				
Total (95% CI)	451	456	+	100.0 %	1.16 [0.85, 1.56]
Total events: 117 (Met + clon	nifene), 106 (clomifene)				
Heterogeneity: Chi ² = 9.23, d	ff = 6 (P = 0.16); I ² =35%				
Test for overall effect: $Z = 0.9$	4 (P = 0.35)				
Test for subgroup differences:	$Chi^2 = 0.66, df = 1 (P = 0)$	1.42), I ² =0.0%			

001 01 1 10 100

Addition of dexamethasone

Clomiphene- resistant anovulatory women:

- DHEAS levels are > 180ug/dL
- Suppressing adrenal androgen,
- Negates the antiestrogen effect of CC on endometrium
- Ovulation 80 %, pregnancy 40 %

Parsanezhad ME et al. Fertil Steril. 2002

Clomiphene failure

Antiestrogenic effect !!!

- Early administration (day 1-5)
- Addition of estrogen (2mg oral /vaginal)
- Tamoxifen
- Aromatase inh
- Gonadotropins

Time of initiation of clomiphene citrate and pregnancy rate in polycystic ovarian syndrome

International Journal of Gynecology and Obstetrics (2006) 93, 44-48

Side effects

- hot flushes,
- breast discomfort,
- abdominal distension,
- nausea and vomiting,
- sleeplessness,
- headache,
- mood swings,
- dizziness and hair loss.
- Visual symptoms (visual blurring or spots)

Multiple pregnancy (7-10%)

Congenital anomalies (2.3%)

Miscarriage (%16-20)

OHSS (uncommon)

Ovarian cancer (no causal relationship)

Tamoxifen (TMX)

- Triphenylethylene derivative with a structure similar to CC,
- TMX only the z-isomer, similar to zuclomiphene
- Occupying the estrogen receptors in the hypothalamus,
- GnRH pulse frequency \uparrow

Tamoxifen

- 20–40 mg daily,
- Cycle day 3 for 5 days
- Tamoxifen is used "off label" to replace CC

Tamoxifen seems as effective as clomiphene at increasing ovulation rates, pregnancy rates and live birth rates in anovulatory women (moderate-quality evidence)

Steiner, A.Z et al, Human Reproduction 2005 Brown J et al, Cochrane Database Syst Rev. 2009

CC and TMX-induced ovulation

- Luteal phase, serum progesteron and estradiol levels \uparrow
- During the fisrt trimester of CC pregnancies; serum progesteron level is 200-300 % higher and serum estradiol level is 66 % higher than in sponteneous pregnancies
- There is less need for supplemental progesteron support in CC than in gonadotropin pregnancies

Aromatase inhibitors

Letrozol (Femara)/ Anastrozol (Arimidex);

- A third generation aromatase inhibitors used for treatment of estrogen-positive breast cancer
- Reversible/selective aromatase inhibitor
- Prevents and rogen-to-estrogens conversion
 - ovarian follicles
 - peripheral tissues
 - beyin

Aromatase inhibitors

Blocks the conversion of androgens to estrogens

- Serum ve lokal estrojen \downarrow
- GnRH secretion \uparrow ,
- Pituitary FSH and LH production 个,
- Monofollicular growth and ovulation

Intraovarian androgens ↑

- intraovarian and rogens \uparrow (FSH res, IGF-I \uparrow)
- Follicular sensitivity to FSH \uparrow

Letrozol

- Alternative first-line treatment for ovulation induction in selected groups of infertile patients,
 - PCOS (resistans, failure)
 - Unexplained infertility,
 - Endometriosis
 - Estrogen dependent cancer
 - Coagulation defect

Letrozol

- Not associated with adverse antiestrogen effects
- Monofollicular (< 5% multiple pregnancy)
- Mid-luteal-phase serum progesterone \$\sqrt{eq}\$ (compared to CC cycles)

Meta-analysis of letrozole versus clomiphene citrate in polycystic ovary syndrome

Donghong He, Fengyan Jiang *

Letrozole versus clomiphene citrate in PCOS

	LE		cc			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Tota	Events	Tota	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
Atay 2006	5	51	11	55	8.4%	0.49 [0.18, 1.31]]
Aygen 2007	2	5	1	5	0,8%	2,00 [0,26, 15,62]]
Badawy 2009	82	218	94	220	73.9%	0.88 [0.70, 1.11]] – – – – – – – – – – – – – – – – – – –
Bayar 2006	9	40	7	40	5.5%	1.29 [0.53, 3.12]] –
Dehbashi 2009	13	50	7	50	5,5%	1.86 [0.81, 4.26]	1 +
Zeinalzadeh 2010	10	50	8	57	5.9%	1.43 [0.61, 3.33]	1
Total (95% CI)		414		427	100.0%	0.97 [0.79, 1.18]	ı 🔶
Total events	121		128				
Heterogeneity: Chi ² = 6	6,51, df = 8	5 (<i>P</i> = 0),26); ² =	23%			
Test for overall effect: 2	Z = 0.34 (/	P = 0.73	3)			F	Favours experimental Favours control

Figure 3 Forest plot of pregnancy rate associated with comparison of letrozole (LE) with clomiphene citrate (CC). CI=confidence intervals; M—H=Mantel-Haenszal.

Reproductive BioMedicine Online (2011) 23, 91-96

95

LET versus CC

- Pregnancy rate
- Miscarriage rate
- Live birth rate
- Multiple pregnancy rate
- no statistical difference beetwen LET and CC

Misso ML et al, Aromatase inhibitors for PCOS: a systematic review and meta-analysis. Hum Reprod Update 2012

LET versus CC/pregnancy rate

(a)

	Letroz	ole	Clomiphene of	citrate		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Atay 2006 (HRB)	11	51	5	55	13.2%	2.75 [0.88, 8.56]	
Badawy 2009 (LRB)	82	218	94	220	29.9%	0.81 [0.55, 1.18]	
Bayar 2006 (LRB)	9	38	7	36	13.5%	1.29 [0.42, 3.92]	
Begum 2009 (MRB)	13	32	6	32	13.2%	2.96 [0.95, 9.21]	
Dehbashi 2009 (MRB)	13	50	7	50	15.1%	2.16 [0.78, 5.98]	
Zeinalzadeh 2010 (HRB)	10	50	8	57	15.1%	1.53 [0.55, 4.24]	
Total (95% CI)		439		450	100.0%	1.53 [0.91, 2.58]	•
Total events	138		127				
Heterogeneity: Tau ² = 0.20); Chi ² = 10	0.02, df	= 5 (P = 0.07);	l ² = 50%			
Test for overall effect: Z =	1.61 (P = 0	0.11)					Favours CC Favours letrozol

Misso ML et al, Aromatase inhibitors for PCOS: a systematic review and meta-analysis. Hum Reprod Update 2012

LET versus CC/live birth rate

	Letroz	ole	Clomiphene	citrate		Odds Ratio (Non-event)	Odds Ratio (Non-event)
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
Atay 2006 (HRB)	0	11	1	5	21.5%	7.67 [0.26, 225.42]	
Badawy 2009 (LRB)	0	82	3	94	27.8%	6.31 [0.32, 124.02]	
Dehbashi 2009 (MRB)	1	13	1	7	28.5%	2.00 [0.11, 37.83]	
Zeinalzadeh 2010 (HRB)	1	10	0	8	22.2%	0.37 [0.01, 10.43]	
Total (95% CI)		116		114	100.0%	2.53 [0.53, 12.16]	-
Total events	2		5				
Heterogeneity: Tau ² = 0.00	; Chi ² = 2.	07, df =	3 (P = 0.56); P	² = 0%			
Test for overall effect: Z =	1.16 (P = (0.25)	andra Alexandria				Favours CC Favours letrozole

LET versus CC/multiple pregnancy

	Letroz	ole	Clomiphene	citrate		Odds Ratio	Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	I IV, Rando	om, 95% Cl
Bayar 2006 (LRB)	8	9	7	7	35.4%	0.38 [0.01, 10.74]		
Dehbashi 2009 (MRB)	10	13	6	7	64.6%	0.56 [0.05, 6.63]		
Total (95% CI)		22		14	100.0%	0.48 [0.07, 3.55]	-	
Total events	18		13					
Heterogeneity: Tau ² = 0.	.00; Chi ² =	0.03, (if = 1 (P = 0.86	5); ² = 0%	í.			1 10 100
Test for overall effect: Z	= 0.71 (P	= 0.48)					Favours CC	Favours letrozole

Clomiphene citrate or aromatase inhibitors for superovulation in women with unexplained infertility undergoing intrauterine insemination: a prospective randomized trial

TABLE 2								
Outcome in letrozole and clomiphene citrate (CC) groups.								
	Letrozole group (n = 205)	$\begin{array}{l} \text{CC group} \\ \text{(n } = 207) \end{array}$	t	P value				
Total number of follicles >18 mm Pretreatment endometrial thickness Endometrial thickness at hCG (mm) Serum E_2 (pg/mL) Serum progesterone (ng/mL) Days to hCG injection (days) Pregnancy/cycle Pregnancy/patient Miscarriage/patient	$\begin{array}{c} 1.6 \pm 0.41 \\ 4.7 \pm 0.4 \\ 9.3 \pm 0.4 \\ 289.1 \pm 64.2 \\ 8.2 \pm 0.9 \\ 12.1 \pm 1.38 \\ 76/400 \ (19.0\%) \\ 76/205 \ (37.07\%) \\ 11 \ (14.4\%) \end{array}$	3.1 ± 0.36 4.4 ± 0.6 9.2 ± 0.6 410 ± 81.2 11.4 ± 1.1 10.5 ± 2.52 74/404 (18.3%) 74/207 (35.7%) 12 (16.2%)	4.4 1.41 2.40 3.12 6.30 4.90 1.88 2.3 1.53	.045 ^a .52 .08 ^a .021 ^a .023 ^a .080 .78 .31 .42				
^a Statistically significant difference: $P < .05$.								

Badawy. CC and letrozole for IUI. Fertil Steril 2009.

Indications:

- Hypogonadotropic anovulation (WHO Group I, unifollicular),
- Clomiphene-resistant, failure (WHO Group II, unifollicular),
- Unexplained infertility (COH/IUI)

Gonadotropins versus anti-estrogens

Cantineau AE, et al. Cochrane Database 2007 (level 1a)

Analysis 1.2. Comparison I anti-estrogens versus gonadotrophins, Outcome 2 pregnancy rate per couple.

Review: Ovarian stimulation protocols (anti-oestrogens, gonadotrophins with and without GnRH agonists/antagonists) for intrauterine insemination (IUI) in women with subfertility

Comparison: I anti-estrogens versus gonadotrophins

Outcome: 2 pregnancy rate per couple

Study or subgroup	Gonadotrophins	Anti-estrogens	Odds Ra	atio Weight	Odds Ratio
	n/N	n/N	M-H,Fixed,959	6 CI	M-H,Fixed,95% CI
Balasch 1994	12/50	4/50		8.9 %	3.63 [1.08, 12.18]
Dankert 2006	17/67	19/71		40.2 %	0.93 [0.43, 1.99]
Ecochard 2000	3/29	6/29		15.7 %	0.44 [0.10, 1.97]
Kamel 1995	4/28	2/26			2.00 [0.33, 11.97]
Karlstrom 1993	3/15	1/17		2.2 %	4.00 [0.37, 43.38]
Karlstrom 1998	8/40	4/34		10.1 %	1.88 [0.51, 6.88]
Matorras 2002	30/49	16/51		LIT.7 %	3.45 [1.51, 7.88]
Total (95% CI) Total events: 77 (Gonad- Heterogeneity: $Chi^2 = 1$ Test for overall effect: Z Test for subgroup differe	278 otrophins), 52 (Anti-estroge 0.40, df = 6 (P = 0.11); I ² = = 2.68 (P = 0.0074) nces: Not applicable	278 ens) =42%	-	100.0 %	1.76 [1.16, 2.66]
			0.1 0.2 0.5 1 2	5 10	
			Favours anti-E2 Eavou	irs gonadotrophn	

- Human menopausal gonadotropins (HMG),
- Purified or recombinant follicle-stimulating hormone (hpFSH, rFSH)
- A recombinant form of human LH
- Urinary hCG/rec hCG

Advantages of recombinant products;

- higher batch-to-batch consistency,
- high purity, avoiding injection of potentially allergenic
- proteins, the likelihood of reducing the risk of infectious particles
- rendering the production independent of urine collection and the elimination of drugs co-extracted from urine

TIL O DICC I		• •	
Jable 2. Different (ionadofroi	nhin nre	narations
Tuble Li billerene	Jonadocio		parations

Preparation	Source of FSH	FSH activity (IU/ ampoule)	LH activity (IU/ ampoule)	Non-FSH urinary proteins
HMG	Urine	75	75	95%
Urinary FSH	Urine	75	< 0.7	95%
Urinary FSH – high purity	Urine	75	< 0.001	< 1%
Recombinant FSH	Chinese hamster ovary	50, 75, 100, 150, 200	None	None

FSH = follicle-stimulating hormone; HMG = human menopausal gonadotrophin.

- hMG versus r-FSH
- u-FSH versus r-FSH
- 43 trial, 3957 women

Cantineau AE, Cohlen BJ, Heineman MJ. Ovarian stimulation protocols (anti-oestrogens, gonadotrophins with and without GnRH agonists/antagonists) for intrauterine insemination (IUI) in women with subfertility. Cochrane Database Syst Rev. 2007

Analysis 5.2. Comparison 5 different types of gonadotrophins, Outcome 2 pregnancy rate per couple.

Review: Ovarian stimulation protocols (anti-oestrogens, gonadotrophins with and without GnRH agonists/antagonists) for intrauterine insemination (IUI) in women with subfertility

Comparison: 5 different types of gonadotrophins

Outcome: 2 pregnancy rate per couple

Study or subgroup	hMG (or r-FSH)	FSH (or u-FSH)	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
I A). hMG versus FSH					
Filicori 2001	6/25	5/25		14.7 %	1.26 [0.33, 4.84]
Filicori 2003	7/25	4/25		11.1 %	2.04 [0.51, 8.12]
Gerli 1993	5/15	1/17		2.4 %	8.00 [0.81, 78.83]
Gurgan 2004	5/40	21/81		47.0 %	0.41 [0.14, 1.18]
Gurgan II 2004	5/40	11/80		24.8 %	0.90 [0.29, 2.78]
Subtotal (95% CI)	145	228		100.0 %	1.02 [0.59, 1.75]
Total events: 28 (hMG (or r-	FSH)), 42 (FSH (or u-FSH	0)			
Heterogeneity: Chi ² = 7.10,	df = 4 (P = 0.13); $I^2 = 449$	%			
Test for overall effect: $Z = 0$.	.07 (P = 0.94)				
2 B). r-FSH versus u-FSH					
Gerli 2004	23/88	22/82		32.1 %	0.97 [0.49, 1.91]
Gerli 2004 (II)	9/35	8/32	-	11.8 %	1.04 [0.34, 3.13]
Gurgan 2004	21/81	11/80		15.6 %	2.20 [0.98, 4.92]
Matorras 2000	26/45	24/46		19.1 %	1.25 [0.55, 2.87]
Pares 2002	28/55	24/61	+	21.3 %	1.60 [0.76, 3.34]
Subtotal (95% CI)	304	301	-	100.0 %	1.36 [0.95, 1.94]
Total events: 107 (hMG (or	r-FSH)), 89 (FSH (or u-FS	H))			
Heterogeneity: Chi ² = 2.78,	df = 4 (P = 0.60); $I^2 = 0.0$	1%			
Test for overall effect: $Z = I$.	.68 (P = 0.093)				
			0.1 0.2 0.5 1 2 5 10		
		Favo	ours FSH/ u-FSH Favours hMG/ r-F	SH	

Step-up protocol

Aim; To define the effective threshold of response

WHO Group I, WHO Group II (unifollicular)

A low daily dose (75 IU daily)

After 4 to 7 days of stimulation; TV-USG, a serum estradiol level

The dose of gonadotropins may be maintained or increased, as indicated (7-12 days)

The lead follicle reaches 16–18 mm, hCG is administered

Ovulation generally may be expected to occur approximately 36–48 hours later

Low slow protocol

Low dose step-up (PCOS); > 85 % monofollicular

- Starting dose: 37.5–75 IU/day (hMG/rFSH) given for 7-14 days
- Step up (by 37.5 IU), if no follicles ≥ 10 mm after 7 days
- Step up every 7 days until dominant follicle appear
- Average stimulation duration 28-35 days

Step-down protocol

Day 3 : Start FSH 150-250 IU x 5 days Day 8 : US every 2-4 days Foll>9mm : Decrease by 37.5 IU every 3 days until 75 IU Maintain 75 IU until hCG injection Foll<9mm : Increase by 37.5 IU, maintain for 10 days Then recheck US. If follicle 9mm or less, cancel cycle.

FSH = follicle-stimulating hormone; GnRHa = gonadotrophin-releasing hormone agonist; hCG = human chorionic gonadotrophin; OC = oocyte collection.

Modified protocol

- Step up and step down protocol can be combined,
- Starting doses (37.5/75 IU/day) gradually increased
- ≥ 10 mm follicul is seen by USG, the doses of gonadotropins ↓

Sequential protocol

- Clomiphene and gonadotropins;
- 50–100 mg daily CC (5 days),
- followed by low dose FSH/hMG (75 IU daily) beginning on the last day of clomiphene therapy or the next day
- Treatment is monitored and individualized thereafter as in standard gonadotropin-stimulated cycles

The prevalence and influence of luteinizing hormone surges in stimulated cycles combined with intrauterine insemination during a prospective cohort study

TABLE 2			
Results			
	Total group (n = 66)	CC group (n = 33)	FSH group (n = 33)
Total no. completed treatment cycles Pregnancies	210	105	105
Total	20 (9.5%)	10 (9.5%)	10 (9.5%)
Ongoing	4	2 (1.376)	2 (1.970)
Miscarriage Treatment-dependent	0 16 (7.6%)	0 8 (7.6%)	0 8 (7.6%)
Ongoing Miscarriage	12 (5.7%) 4 (1.9%)	6 (5.7%) 2 (1.9%)	6 (5.7%) 2 (1.9%)
No. cycles with LH measurements	153	76	77
No. pregnancies/cycles with an LH surge	2/55 (3.6%)	1/23 (4.3%)	1/32 (3.1%)
No. pregnancies/cycles without an LH surge	9/98 (9.2%)	4/53 (7.5%)	5/45 (11.1%)
No. pregnancies/cycles with no LH determination	5/57 (8.8%)	3/29 (10.3%)	2/28 (7.1%)

Cantineau. LH surges in stimulated cycles with IUI. Fertil Steril 2007.

Adjuvant GnRH agonist therapy

 combined treatment with a GnRH agonist and exogenous gonadotropins;

Elevated endogenous LH levels (PCOS);

 predispose to premature luteinization during exogenous gonadotropin stimulation

a contributing factor in the higher incidence of spontaneous miscarriage

- GnRH agonist; endogenous LH levels \downarrow , premature luteinization \downarrow

Tulppala M et al, *Hum Reprod 8:7640, 1993* Manzi DL et al, *Fertil Steril 63:866, 1995*

Adjuvant GnRH agonist in OI/IUI

Analysis 6.2. Comparison 6 gonadotrophins alone versus gonadotrophins with GnRH agonist, Outcome 2 pregnancy rate per couple.

Review: Ovarian stimulation protocols (anti-oestrogens, gonadotrophins with and without GnRH agonists/antagonists) for intrauterine insemination (IUI) in women with subfertility

Comparison: 6 gonadotrophins alone versus gonadotrophins with GnRH agonist

Outcome: 2 pregnancy rate per couple

Study or subgroup	Gonadotrophins alone	gonadotrophins+GnRHanta	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Carrera 2002	9/30	5/30		14.9 %	2.14 [0.62, 7.39]
Carrera 2002 (II)	8/30	5/30		15.6 %	1.82 [0.52, 6.38]
Pattuelli 1996	27/104	16/100		51.3 %	1.84 [0.92, 3.68]
Sengoku 1994	7/46	5/45		18.2 %	1.44 [0.42, 4.91]
Total (95% CI)	210	205	-	100.0 %	1.81 [1.10, 2.97]
Total events: 51 (Gonadotro	ophins alone), 31 (gona	adotrophins+GnRHanta)			
Heterogeneity: $Chi^2 = 0.21$, df = 3 (P = 0.98); l ² =	=0.0%			
Test for overall effect: $Z = 2$	2.34 (P = 0.019)				
Test for subgroup difference	es: Not applicable				
		01			
		0.1	0.2 0.5 1 2 5 10		

Favours alone Favours GnRHagonist

GnRH- antagonist in OI/IUI

Analysis 7.2. Comparison 7 gonadotrophins alone versus gonadotrophins with GnRH antagonist, Outcome 2 pregnancy rate per couple.

Review: Ovarian stimulation protocols (anti-oestrogens, gonadotrophins with and without GnRH agonists/antagonists) for intrauterine insemination (IUI) in women with subfertility

Comparison: 7 gonadotrophins alone versus gonadotrophins with GnRH antagonist

Outcome: 2 pregnancy rate per couple

Study or subgroup	gor gonadotrophins+antag	adotrophins alone	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Gomez 2005	15/39	7/41		24.2 %	3.04 [1.07, 8.57]
Lambalk 2006	13/93	12/85		62.2 %	0.99 [0.42, 2.30]
Ragni 2001	3/19	3/22		13.5 %	1.19 [0.21, 6.72]
Total (95% CI)	151	148	-	100.0 %	1.51 [0.83, 2.76]
Total events: 31 (gonadotr Heterogeneity: $Chi^2 = 2.7$ Test for overall effect: $Z =$ Test for subgroup difference	ophins+antag), 22 (gonadotrop 7, df = 2 (P = 0.25); I ² =28% 1.34 (P = 0.18) tes: Not applicable	hins alone)			
			0.1 0.2 0.5 1 2 5 10		
			Favours alone Favours antagonist		

LH in OI/IUI cycles

- Hypo-hypo (LH levels <1.2 IU/L)
- ≥35 years
- Poor responders
- PCOS previous excessive response
 - hMG/ rec LH supplementation from stimulation day D1,

- Latter stages of follicular development, the number of developing follicles \checkmark

Loumaye E, et al, Hum Reprod 18:314, 2003.

LH supplementation in OI/IUI

Actions of LH in larger and smaller follicles different;

- promote larger follicle growth
- regression of smaller follicles (OHSS \downarrow)
- intrafollicular and rogen \uparrow

Filicori M et al, Modulation of folliculogenesis and steroidogenesis in women by graded menotrophin administration, *Hum Reprod 17:2009, 2002.*

Monitoring Gonadotropin Therapy

TV-USG, serum estradiol measurements

Gonadotropins are administered in the evening (5:00 and 8:00 p.m.)

Serum estradiol measurements are obtained early in the morning

Estradiol levels rise at a constant exponential pace, doubling approximately every 2–3 days

Serum estradiol level \geq 180-250 pg/mL per mature follicle,

uhCG (5,000 or 10,000 IU) or rhCG 250 mg if the lead follicle is at least 16 mm and estradiol concentration is consistent with the number of follicles

Optimal follicular size?

19-30 mm (mean 25 mm) in CC cycles

23 to 28 mm range in letrozol cycles

≥ 16 mm in gonadotropin cycles;

What is the optimal follicular size before triggering ovulation in intrauterine insemination cycles with clomiphene citrate or letrozole? An analysis of 988 cycles

Anna Palatnik, M.D.,^a Estil Strawn, M.D.,^a Aniko Szabo, Ph.D.,^b and Paul Robb, M.D.^a

SUPPLEMENTAL FIGURE 1

The estimated effect of the leading follicle size on the probability of pregnancy depending on endometrial thickness and cycle type. The figure is adjusted for other covariates via logistic regression. Reference levels (mean for continuous and mode for discrete variables): age = 34 years; primary diagnosis = unexplained.

Palatnik. Optimal follicular size before hCG. Fertil Steril 2012.

Monitoring Gonadotropin Therapy

hCG generally should not be administered;
> 3 dominant follicules (≥14 mm),
> 5 follicules exist > 10-11 mm follicules

Andersen AN, et alHum Reprod. 2006 Steures P et al, Reprod Biomed Online. 2007

Optimal timing of IUI

- At least one follicle \geq 18 mm
- 24 or 36 h after hCG injection
- IUI 36 h after hCG has marginally better pregnancy rates than 24 h
- Premature administration of hCG acts like a premature LH surge and may result in follicular atresia

Progesterone luteal support after ovulation induction and intrauterine insemination: a systematic review and meta-analysis

Micah J. Hill, D.O.,^a Brian W. Whitcomb, Ph.D.,^b Terrence D. Lewis, M.D.,^c Mae Wu, D.O.,^c Nancy Terry,^d Alan H. DeCherney, M.D.,^a Eric D. Levens, M.D.,^e and Anthony M. Propst, M.D.^c

TABLE 2

Primary pregnancy outcomes in the five included randomized controlled trials reported on a per cycle basis.

Study	Group	Patients (n)	Cycles (n)	Positive hCG	P value	Clinical pregnancy	P value	Live birth	P value
Erdem et al. 2009 (6)	P Control	109 105	223 204	25.1% 13.7%	.002	21.2% 12.7%	.028	17.4% 9.3%	.016
Kyrou et al. 2010 (8)	P Control	243 225	243 225	NR NR	NR	7.3% ^a 8.7% ^a	NS	NR NR	NR
Ebrahami et al. 2010 (5)	P Control	98 102	252 259	13.5% 11.2%	NS	11.5% 10.0%	NS	7.5% 5.7%	NS
Maher 2011 (7)	P Control	37 ^b 34 ^b	132 126	37.1% 20.6%	.004	29.5% 19.8%	.07	18.9% 5.5%	<.001
Agha-Hosseini et al. 2012 (4)	P Control	148 142	148 142	29.0% 21.8%	NS	24.3% 14.1%	.02	NR NR	NR

Note: NR = not reported; NS = not significant.

^a Values reported as ongoing pregnancy (intrauterine fetal cardiac activity after 12 weeks gestation).

^b Other studies reporting gestational sac on ultrasound.

Hill. Progesterone luteal support for IUIs. Fertil Steril 2013.

Progesterone luteal support after ovulation induction and intrauterine insemination: a systematic review and meta-analysis

Micah J. Hill, D.O.,^a Brian W. Whitcomb, Ph.D.,^b Terrence D. Lewis, M.D.,^c Mae Wu, D.O.,^c Nancy Terry,^d Alan H. DeCherney, M.D.,^a Eric D. Levens, M.D.,^e and Anthony M. Propst, M.D.^c

URE 1						
^	Clinical Pro	egnancy				
^		egnancy				
	Author	Sample size	Measure (CI)	Weight	P valu	Je .
	Agha-Hosseini	290	1.96 (1.07; 3.5	9) 18.91	.03	
	Ebrahimi	511	1.21 (0.69; 2.1	1) 21.52	.5	
	Erdem	427	1.83 (1.08; 3.0	8) 23.7	.02	
	Kyrou	452	0.82 (0.41; 1.6	2) 15.48	.57	
	Maher	258	1.69 (0.95; 3.0	1) 20.4	.07	
	Synthesis	1938	1.47 (1.1; 1.98) 100	.01	
						no supplemental progesterone or supplemental progesterone
В	Live Birth					
	Author	Sample size	Measure (CI)	Weight	P value	
	Ebrahimi	511	1.33 (0.66; 2.67)	33.79	.43	
	Erdem	427	2.06 (1.15; 3.7)	40.36	.02	—— — —
	Maher	258	3.97 (1.65; 9.56)	25.85	0	
	Synthesis	1196	2.11 (1.21; 3.67)	100	.01	
						0.5 1 2 4 8 16
			a bish of			no supplemental progesterone or supplemental progesterone
est plot of (A) clinica	l pregnanc	y and (B) li	ve birth. Cl	= confic	dence int	terval.
rogesterone luteal support	for IUIs. Fertil	Steril 2013.				

Common protocols in IUI cycles

- Individualize the ovarian stimulation protocol
- CC, first line treatment agent for OI (3 ovulatory cycles)
- Gonadotropins, the most effective drugs when IUI is combined with OI
- Low dose daily, step-up protocol are advised when using gonadotropins
- •
- GnRH-a, no proven advantage in OI/IUI cycles
- GnRH- antg, promising but needs definitive answers ??
- LH supplementation has a role in selected patients